橢圓的兩個焦點是(2,0),且點M(0,2)在橢圓上,則其準線方程是_______.

答案:
解析:

x=±4


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點是(-3,0),(3,0),且點(0,2)在橢圓上,則橢圓的標準方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)設橢圓的兩個焦點是

   (1)設E是直線與橢圓的一個公共點,求使得取最小值時橢圓的方程;   (2)已知設斜率為的直線與條件(1)下的橢圓交于不同的兩點A,B,點Q滿足,且,求直線軸上截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省衢州一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設橢圓的兩個焦點是F1(-c,0),F(xiàn)2(c,0)(c>0).
(1)設E是直線y=x+2與橢圓的一個公共點,求使得|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,-1)設斜率為k(k≠0)的直線l與條件(1)下的橢圓交于不同的兩點A,B,點Q滿足,且,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省衢州一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設橢圓的兩個焦點是F1(-c,0),F(xiàn)2(c,0)(c>0).
(1)設E是直線y=x+2與橢圓的一個公共點,求使得|EF1|+|EF2|取最小值時橢圓的方程;
(2)已知N(0,-1)設斜率為k(k≠0)的直線l與條件(1)下的橢圓交于不同的兩點A,B,點Q滿足,且,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

同步練習冊答案