【題目】已知函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),當(dāng)0<x<2時(shí),f(x)=4x , 則f(﹣ )+f(2)=

【答案】-2
【解析】解:∵f(x)是定義在R上周期為4的奇函數(shù),
∴f(﹣ )=f(﹣ +4)=f(﹣ )=﹣f(
∵x∈(0,2)時(shí),f(x)=4x
∴f(﹣ )=﹣2,
∵f(x)是定義在R上周期為4的奇函數(shù),
∴f(﹣2)=f(﹣2+4)=f(2),同時(shí)f(﹣2)=﹣f(2),
∴f(2)=0,
∴f(﹣ )+f(2)=﹣2.
故答案為:﹣2
根據(jù)f(x)是周期為2的奇函數(shù)即可得到f(﹣ )=f(﹣4﹣ )=f(﹣ )=﹣f(﹣ ),利用當(dāng)0<x<2時(shí),f(x)=4x , 求出f(﹣ ),再求出f(2),即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(1)求證:AC⊥BD;
(2)若二面角B﹣AC﹣D為45°,求直線AB與平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為(
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程|x2﹣2x﹣1|﹣t=0有四個(gè)不同的實(shí)數(shù)根x1、x2、x3、x4,且x1<x2<x3<x4 , 則2(x4﹣x1)+(x3﹣x2)的取值范圍是(
A.(8,6
B.(6 ,4
C.[8,4 ]
D.(8,4 ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實(shí)數(shù)a,b的值.
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2+ax+3,已知不等式f(x)<0的解集為{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求實(shí)數(shù)m的取值范圍;
(3)若f(x)≥nx對(duì)任意的實(shí)數(shù)x≥1成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案