【題目】已知四棱錐,,,,點在底面上的射影是的中點,.
(1)求證:直線平面;
(2)若,、分別為、的中點,求直線與平面所成角的正弦值;
(3)當四棱錐的體積最大時,求二面角的大。
【答案】(1)證明見解析(2)(3)
【解析】
(1)連接,由題意可得出平面,可得出,由等腰三角形三線合一的思想可得出,再利用線面垂直的判定定理可得出結論;
(2)以點為坐標原點,、所在直線分別為、軸建立空間直角坐標系,先由求出點的坐標,然后利用空間向量法可求出直線與平面所成角的正弦值;
(3)設,則,,利用基本不等式求出三棱錐體積的最大值,求出的值,以點為坐標原點,、所在直線分別為、軸建立空間直角坐標系,利用空間向量法可求出二面角的大。
(1)連接,因為平面,平面,所以,
又因為,且為的中點,故.
又,所以平面;
(2)以為原點,、所在直線分別為、軸建立直角坐標系如圖所示,
則,,,,
于是,解得.即.
所以,,
設平面的法向量為,,,
則,令,得,
所以.
故直線與平面所成角的正弦值為;
(3)設,則,,
所以,
當且僅當即時取等號,此時,,
以為原點,、所在直線分別為、軸建立空間直角坐標系如圖所示,
則,,,.
設平面的法向量為,,,
則,令,得,
同理,可得平面的一個法向量為的,
所以,
又因為二面角為鈍二面角,所以二面角的大小為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若設是函數(shù)的極值點,求函數(shù)在上的最大值;
(2)設函數(shù)在和兩處取到極值,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系.已知直線的極坐標方程為,曲線的極坐標方程為().
(Ⅰ)設為參數(shù),若,求直線的參數(shù)方程;
(Ⅱ)已知直線與曲線交于,,設,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校食堂對30名高三學生偏愛蔬菜與偏愛肉類進行了一次調(diào)查,將統(tǒng)計數(shù)據(jù)制成如下表格:
偏愛蔬菜 | 偏愛肉類 | |
男生人 | 4 | 8 |
女生人 | 16 | 2 |
(1)求這30名學生中偏愛蔬菜的概率;
(2)根據(jù)表格中的數(shù)據(jù),是否有99.5%的把握認為偏愛蔬菜與偏愛肉類與性別有關?
附:,.
0 | 0 | 0 | |
6 | 7 | 10.8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校計劃舉辦“國學”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學進行了國學素養(yǎng)測試,這10名同學的性別和測試成績(百分制)的莖葉圖如圖所示.
(1)分別計算這10名同學中,男女生測試的平均成績;
(2)若這10名同學中,男生和女生的國學素養(yǎng)測試成績的標準差分別為S1,S2,試比較S1與S2的大。ú槐赜嬎悖恍柚苯訉懗鼋Y果);
(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學中隨機選取一男一女兩名同學,求這兩名同學的國學素養(yǎng)測試成績均為優(yōu)良的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù),其導數(shù)為
(1)當時,求的單調(diào)區(qū)間;
(2)函數(shù)是否存在零點?說明理由;
(3)設在處取得最小值,求的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 A 、B 、Ai 為集合.
(1)滿足 A ∪ B ={a , b}的集合有序對(A , B)有多少對 ? 為什么 ?
(2)滿足 A ∪ B ={a1 , a2 , …, }的集合有序對(A , B)有多少對? 為什么?
(3)滿足的集合有序組有多少組? 為什么 ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上單調(diào)遞減的為( )
A. y=ln(3﹣x2) B. y=cosx C. y=x﹣2 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com