已知點(diǎn)P是圓F1:(x+
3
2+y2=4上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線與PF1交于M點(diǎn),則點(diǎn)M的軌跡C的方程為
 
考點(diǎn):軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先確定F1、F2的坐標(biāo),再根據(jù)線段PF2的中垂線與PF1交于M點(diǎn),結(jié)合雙曲線的定義,可得點(diǎn)M的軌跡是以F1、F2為焦點(diǎn)的雙曲線,從而可得點(diǎn)M的軌跡C的方程.
解答: 解:由題意得,F1(-
3
,0)
,則F2(
3
,0)
,
圓F1的半徑|PF1|=2,且|MF2|=|MP|,
當(dāng)|MF1|>|MF2|時,|MF1|-|MF2|=|MF1|-|MP|=|PF1|=2<2
3
=|F1F2|;
當(dāng)|MF1|<|MF2|時,|MF2|-|MF1|=|MP|-|MF1|=|PF1|=2<2
3
=|F1F2|.
∴點(diǎn)M的軌跡是以F1、F2為焦點(diǎn)的雙曲線,其中實軸2a=2,焦距2c=2
3
,
則虛半軸b=
c2-a2
=
2
,
雙曲線方程為:x2-
y2
2
=1

故答案為:x2-
y2
2
=1
點(diǎn)評:本題考查了雙曲線的定義,考查了雙曲線方程的求法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(ωx-
π
5
)
最小正周期為
π
3
,其中ω>0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某市創(chuàng)建全國文明城市工作驗收時,國家文明委有關(guān)部門對某校高二年級6名學(xué)生進(jìn)行了問卷調(diào)查,6人得分情況如下:5,6,7,8,9,10.把這6名學(xué)生的得分看成一個總體.如果用簡單隨機(jī)抽樣方法從這6名學(xué)生中抽取2名,他們的得分組成一個樣本,則該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率為( 。
A、
3
5
B、
4
15
C、
7
15
D、
8
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(log4x)2-
5
2
log4
x+1.
(1)當(dāng)x∈[2,4]時,求該函數(shù)的值域;
(2)若f(x)≥mlog4x對于x∈[4,16]恒成立,求m有取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為-1,公差d≠0的等差數(shù)列,且它的第2、3、6項依次構(gòu)成等比數(shù)列{bn}的前3項.
(1)求{an}的通項公式;
(2)若{bn}的前項和為Sn,求使得Sn<400的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x,x≥0
-x2+2x,x<0
.若f(a)≤3,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的一元二次方程mx2+(m-1)x+m=0有實根,則實數(shù)m的取值范圍是( 。
A、{m|-1<m<
1
3
}
B、{m|-1<m≤
1
3
}
C、{m|-1≤m≤
1
3
且m≠0}
D、{m|m≤-1或m≥
1
3
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)0.064 -
1
3
-(
7
8
0+16 
3
4
+(
2
33
6
(2)lg
1
2
-lg
5
8
+lg12.5+log23•log38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 求證:
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
(n≥2,n∈N*
(Ⅲ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
](f′(x)
是f(x)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案