【題目】正方形的邊長為1,點
在邊
上,點
在邊
上,
.動點
從
出發(fā)沿直線向
運動,每當(dāng)碰到正方形的邊時反彈,反彈時反射角等于入射角,當(dāng)點
第一次碰到
時,
與正方形的邊碰撞的次數(shù)為( )
A. 4B. 3C. 8D. 6
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知雙曲線與橢圓有相同焦點,且過點
,求雙曲線標(biāo)準(zhǔn)方程;
(2)已知橢圓的一個焦點為
,橢圓上一點
到焦點
的最大距離是3,求這個橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱,中,
.
(1)求異面直線與
所成角的大��;
(2)若是線段
上(不含線段的兩端點)的一個動點,請?zhí)岢鲆粋€與三棱錐體積有關(guān)的數(shù)學(xué)問題(注:三棱錐需以點
和已知正四棱柱八個頂點中的三個為頂點構(gòu)成);并解答所提出的問題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數(shù),則隨機變量
的數(shù)字期望
是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校組織高一年級學(xué)生到古都西安游學(xué).在某景區(qū),由于時間關(guān)系,每個班只能在甲、乙、丙三個景點中選擇一個游覽.高一班的
名同學(xué)決定投票來選定游覽的景點,約定每人只能選擇一個景點,得票數(shù)高于其它景點的入選.據(jù)了解,在甲、乙兩個景點中有
人會選擇甲,在乙、丙兩個景點中有
人會選擇乙.那么關(guān)于這輪投票結(jié)果,下列說法正確的是
①該班選擇去甲景點游覽;
②乙景點的得票數(shù)可能會超過;
③丙景點的得票數(shù)不會比甲景點高;
④三個景點的得票數(shù)可能會相等.
A. ①② B. ①③ C. ②④ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,
是等比數(shù)列,
,
.
(1)求和
的通項公式;
(2)若,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,平面
平面
,
,
.設(shè)D,E分別為PA,AC中點.
(Ⅰ)求證:平面PBC;
(Ⅱ)求證:平面PAB;
(Ⅲ)試問在線段AB上是否存在點F,使得過三點D,E,F的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點F的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)·商功》中闡述:“斜解立方,得兩壍堵。斜解壍堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,則對該幾何體描述:
①四個側(cè)面都是直角三角形;
②最長的側(cè)棱長為;
③四個側(cè)面中有三個側(cè)面是全等的直角三角形;
④外接球的表面積為.
其中正確的個數(shù)為( )
A. 0B. 1
C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,
,
,
是
的中點,
是
的中點.
(1)求異面直線與
所成角的大��;
(2)若直三棱柱的體積為
,求四棱錐
的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com