如圖:直三棱柱油箱底面的面積是,、、是三條側棱上的小孔(其面積忽略不計),,若允許油箱傾斜,求這個油箱的最大容積。

見解析


解析:

解:當一個容器能裝滿時,容積最大.由于這個油箱有、三個小孔,因此只有把幾何體裝滿時油箱的容積最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A′B′C′的側棱AA′=4,底面三角形ABC中,AC=BC=2,∠ACB=90°,D是AB的中點.
(Ⅰ)求證:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1,二面角A-BD-C的大小為
π3

(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)求B1C與平面BCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=
5
,AA1=3,M為線段BB1上的一動點,則當AM+MC1最小時,△AMC1的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•崇文區(qū)一模)如圖,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,點E是棱BC的中點,AB=BC=AA′
(I)求證直線CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大小;
(III)求直線CA′與平面BB′C′C所成角的大小.

查看答案和解析>>

同步練習冊答案