已知復數(shù)z1=-1+ai,z2=b-,a,b∈R,且z1+z2與z1•z2均為實數(shù),則=   
【答案】分析:先求出z1+z2與z1•z2均,根據(jù)復數(shù)的分類,求出a,b的值后,再復數(shù)除法的運算法則計算.
解答:解:∵z1=-1+ai,z2=b-,a,b∈R,-1
∴z1+z2=-1+b+(a-)i,z1•z2=-b++(+ab)i
∵z1+z2與z1•z2均為實數(shù),∴虛部均為0,
即a-=0,且+ab=0,
即a=,b=-1.
====
故答案為:
點評:本題考查復數(shù)代數(shù)形式的混合運算,復數(shù)的分類.復數(shù)除法的關鍵是分子分母同乘以分母的共軛復數(shù),實現(xiàn)分母實數(shù)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=-1+2i,z2=1-i,z3=3-2i,其中i為虛數(shù)單位,它們所對應的點分別為A,B,C.若
OC
=x
OA
+y
OB
,則x+y 的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=1-2i,則z2=
z1+1
z1-1
的虛部是( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=1-i,z1•z2=1+i,則復數(shù)z2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=1-2i,z2=3+4i,i為虛數(shù)單位.
(1)若復數(shù)z1+az2對應的點在第四象限,求實數(shù)a的取值范圍;
(2)若z=
z1-z2
z1+z2
,求z的共軛復數(shù)
.
z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=1+2i,z2=2-mi(m∈R),若(
z1
z2
)2=-1
,則實數(shù)m的值是( 。

查看答案和解析>>

同步練習冊答案