設(shè)△ABC的內(nèi)角A,B,C的對邊分別a,b,c且c=3,C=
π
3
,若sin(A+C)=2sinA,求a,b的值.
考點:正弦定理,余弦定理
專題:解三角形
分析:先利用正弦定理和已知等式求得a和b的關(guān)系式,進(jìn)而根據(jù)余弦定理求得a和b的另一關(guān)系式,聯(lián)立方程可求得a和b的值.
解答: 解:∵sin(A+C)=2sinA,由正弦定理得
a
b
=
1
2
,①
由余弦定理得c2=a2+b2-2abcos
π
3
 即a2+b2-ab=9②
由①②解得a=
3
,b=2
3
點評:本題主要考查了正弦定理和余弦定理的應(yīng)用.考查了學(xué)生對三角函數(shù)基礎(chǔ)公式的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人下棋,兩人下成和棋的概率是
1
2
,乙獲勝的概率是
1
3
,則乙不輸?shù)母怕适牵ā 。?/div>
A、
1
6
B、
5
6
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)甲乙丙三人每次射擊命中目標(biāo)的概率分別為0.7,0.6和0.5,若三人各向目標(biāo)射擊一次,求
(1)至少有一人命中目標(biāo)的概率.
(2)恰有兩人命中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,a2n=2an+1(n∈N*),Sn是數(shù)列{an}的前n項和.
(Ⅰ)求an,Sn;
(Ⅱ)設(shè)數(shù)列{bn}滿足
b1
a1
+
b2
a2
+…+
bn
an
=1-
1
2n
(n∈N*),求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個非負(fù)整數(shù)的有序數(shù)對(x,y),如果在做x與y的加法時不用進(jìn)位,則稱(x,y)為“中國夢數(shù)對”,x+y稱為“中國夢數(shù)對”(x,y)的和,則和為2014的“中國夢數(shù)對”的個數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)滿足:當(dāng)x≥2時,f(x)=(x-2)(a-x),a∈R,當(dāng)x∈[0,2)時,f(x)=x(2-x)
(Ⅰ)求f(x)表達(dá)式;
(Ⅱ)若直線y=1與函數(shù)y=f(x)的圖象恰有兩個公共點,求實數(shù)a的取值范圍;
(Ⅲ)試討論當(dāng)實數(shù)a、m滿足什么條件時,直線y=m和函數(shù)y=f(x)的圖象恰有k個公共點(k≥3),
且這k個公共點均勻分布在直線y=m上.(不要求過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞)且對任意的正實數(shù)x,y都有f(xy)=f(x)+f(y),且當(dāng)x>1時,f(x)>0,f(4)=1
(1)求f(1)及f(
1
16
)
;
(2)解不等式f(x)+f(x-3)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式x2+bx+c>0的解集為{x|x<2或x>3},求關(guān)于x的不等式cx2+bx+1<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln(x2-2x-3)的定義域是
 

查看答案和解析>>

同步練習(xí)冊答案