已知公差大于0的等差數(shù)列{an},a2=4,且a2,a4-2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由題意列出方程解得d,寫出通項(xiàng)公式;
(2)易得數(shù)列{bn}是首項(xiàng)為2,公比為8的等比數(shù)列,利用前n項(xiàng)和公式求出數(shù)列{bn}的前n項(xiàng)和Sn
解答: 解:(1)設(shè)等差數(shù)列的公差為d,由題意得(a4-2)2=a2a6
即(4+2d-2)2=4(4+4d),解得d=3或d=-1(舍去)
∴an=3n-2.
(2)由(1)得bn=2an=23n-2=2•8n-1,
∴數(shù)列{bn}是首項(xiàng)為2,公比為8的等比數(shù)列,
∴sn=
2(1-8n)
1-8
=
2
7
(8n-1).
點(diǎn)評(píng):本題考查等差數(shù)列及等比數(shù)列的有關(guān)性質(zhì)的應(yīng)用,注意方程思想的運(yùn)用,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x|x=2m-1,m∈Z},N={x|x2-x-12<0,x∈R},則集合M∩N等于( 。
A、{-3,-1,1,3}
B、{1,3}
C、{0,1,2,3}
D、{-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A,B是單位圓O上的兩點(diǎn),點(diǎn)C是圓O與x軸正半軸的交點(diǎn),將銳角α的終邊OA按逆時(shí)針方向旋轉(zhuǎn)
π
3
到OB.
(1)若A的坐標(biāo)為(
3
5
4
5
),求點(diǎn)B的橫坐標(biāo);                          
(2)求|BC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:A(cos2x,sin2x),其中0≤x<π,B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(1)求f(x)的對(duì)稱軸和對(duì)稱中心;  
(2)求f(x)的單調(diào)遞增區(qū)間.(提示:sinα+cosα=
2
sin(α+
π
4
))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某銀行柜臺(tái)有服務(wù)窗口①,假設(shè)顧客在此辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間/分 1 2 3 4 5
        頻率 0.1 0.4 a 0.1 0.1
從第一個(gè)顧客開始辦理業(yè)務(wù)時(shí)計(jì)時(shí),
(1)求a的值;
(2)估計(jì)第三個(gè)顧客恰好等待4分鐘開始辦理業(yè)務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=
2
bnbn+1
,記數(shù)列{cn}的前n項(xiàng)和為Tn.若對(duì)于任意的n∈N*,Tn≤λ(n+4)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P一ABCD中,底面ABCD為直角梯形,AD∥BC,∠BAD=90°.BC=2AD,AC與BD交于點(diǎn)O,點(diǎn)M,N分別在線PC、AB上,
CM
MP
=
BN
NA
=2.
(Ⅰ)求證:平面MNO∥平面PAD;
(Ⅱ)若平面PA⊥平面ABCD,∠PDA=60°,且PD=DC=BC=2,求二面角B-AM-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*).
(1)求a3、a5、a7的值;
(2)求a2n-1(用含n的式子表示);
(3)(理)記數(shù)列{an}的前n項(xiàng)和為Sn,求Sn(用含n的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校有兩個(gè)食堂,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一個(gè)食堂用餐,則他們不同在一個(gè)食堂用餐的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案