(本小題滿分14分)
如圖,線段MN的兩個端點M.N分別在x軸.y 軸上滑動,,點P是線段MN上一點,且,點P隨線段MN的運動而變化.

(1)求點P的軌跡C的方程;
(2)過點(2,0)作直線,與曲線C交于A.B兩點,O是坐標原點,設 是否存在這樣的直線,使四邊形的對角線相等(即)?若存在,求出直線的方程;若不存在,試說明理由.

解:(1)設,P(x , y) 因為,所以 (*)1分
又點P是MN上一點,且,所以P分所成的比為……..2分
     …….  4分
將其代入(*)得 即為所求的方程……5分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的漸近線方程為y=±,則此雙曲線的離心率為________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

線段∣AB∣=4,∣PA∣+∣PB∣=6,M是AB的中點,當P點在同一平面內運動時,PM的長度的最小值是(  )
A.2B.C.D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、已知,點滿足為直角坐標原點,
(1)求點的軌跡方程;                           (6分)
(2)任意一條不過原點的直線與軌跡方程相交于點兩點,三條直線,的斜率分別是、、,求;(10分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的中心在坐標原點,焦點在x軸上,橢圓上點P到兩焦點的距離之和是12,則橢圓的標準方程是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點F(1,0),直線,設動點P到直線的距離為,已知,且
(1)求動點P的軌跡方程;
(2)若,求向量的夾角;
(3)如圖所示,若點G滿足,點M滿足,且線段MG的垂直平分線經過點P,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖放置的等腰直角三角形ABC薄片(∠ACB=,AC=2)沿x軸滾動,設頂點A(x,y)的軌跡方程是y=,則在其相鄰兩個零點間的圖象與x軸所圍區(qū)域的面積為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左焦點,O為坐標原點,點P在橢圓上,點Q在橢圓的右準線上,若則橢圓的離心率為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩點,若曲線上存在點P,使,則稱該曲線為“Q型曲線”. 給出下列曲線:①;②;③;④,其中為“Q型曲線”的是 (    )
A.①和②B.②和③C.①和④D.②和④

查看答案和解析>>

同步練習冊答案