已知向量
a
=(m,2),向量
b
=(2,-3),若
a
b
,則實數(shù)m的值是( 。
A、-2
B、3
C、
4
3
D、-3
考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:由向量垂直的性質(zhì)得
a
b
=2m-6=0,由此能求出實數(shù)m的值.
解答: 解:∵向量
a
=(m,2),向量
b
=(2,-3),
a
b
,
a
b
=2m-6=0,解得m=3.
故選:B.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量垂直的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列
15
2
24
5
,
35
10
,
48
17
,
63
26
,…的一個通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且與拋物線y2=x交于A、B兩點,若△OAB(O為坐標原點)的面積為2
2
,則橢圓C的方程為( 。
A、
x2
8
+
y2
4
=1
B、
x2
2
+y2=1
C、
x2
12
+
y2
6
=1
D、
x2
12
+
y2
8
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線直線l1:a1x+b1y+c1=0直線l2:a2x+b2y+c2=0相交,證明方程:a1x+b1y+c1+λ(a2x+b2y+c2)=0(λ∈R)表示過l1與l2交點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin(α+π)=-
3
5
,且α∈Ⅱ,tan(θ+
3
2
π
)=-2,且θ∈Ⅲ,求sin(α-θ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為2的正方形,且PD⊥底面ABCD,PD=AB,點M的是PC的中點.
(1)求證:PA∥平面MBD;
(2)求平面PDC與平面BDM所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)(
2
i
1+i
2(其中i為虛數(shù)單位)的虛部為( 。
A、-iB、iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-
(a+1)x
x+1
,其中a≥0
(Ⅰ)當a=1時,求曲線y=f(x)在(1,f(1))處的切線方程;
(Ⅱ)討論f(x)在其定義域上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校為調(diào)查學生喜歡“應(yīng)用統(tǒng)計”課程是否與性別有關(guān),隨機抽取了選修課程的55名學生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計課程不喜歡統(tǒng)計課程
男生205
女生1020
(1)判斷是否有99.5%的把握認為喜歡“應(yīng)用統(tǒng)計”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學生中抽取6名學生作進一步調(diào)查,將這6名學生作為一個樣本,從中任選2人,求恰有1個男生和1個女生的概率.
P(K2≥k)0.100.050.250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
臨界值參考:
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案