【題目】如圖,已知四邊形為直角梯形, ,若是以為底邊的等腰直角三角形,且.

(1)證明: 平面;

(2)求直線(xiàn)與平面所成的角的大小.

【答案】(1)見(jiàn)解析;(2) .

【解析】試題分析:

1)要證與平面垂直,就要證與平面內(nèi)兩條相交直線(xiàn)垂直,由已知垂直,則有與平面垂直,從而,另外在可計(jì)算出的三邊長(zhǎng),由勾股定理逆定理可得,從而證得平面;(2由(1)知兩兩垂直,因此以他們?yōu)?/span>軸建立空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)坐標(biāo),求出平面的法向量與直線(xiàn)的方向向量,由這兩個(gè)向量夾角與直線(xiàn)與平面所成角的關(guān)系可得.

試題解析:

證明:由已知得: ,所以,即

在直角梯形ABCD中, , ,由是以為底邊的等腰直角三角形得:

,得,

可算得:

所以: ,即PC⊥平面PAD.

(2)如圖建系,可得:

, , ,

,

,

設(shè)平面PBC的法向量為,則有

,令得: ,

設(shè)直線(xiàn)AB與平面PBC所成的角是

所以直線(xiàn)AB與平面PBC所成的角是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,方程ax2-3x+2=0的解為1和b

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)若數(shù)列{bn}滿(mǎn)足bnan·2n,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面,三角形為等邊三角形, ,且

1)求證: 平面

2)求證:平面平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知圓的圓心在直線(xiàn)上,且過(guò)點(diǎn),與直線(xiàn)相切.

)求圓的方程

)設(shè)直線(xiàn)與圓相交于兩點(diǎn).求實(shí)數(shù)的取值范圍.

的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線(xiàn)過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程中,沒(méi)有實(shí)數(shù)根的是( 。
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校準(zhǔn)備組織師生共60人,從南靖乘動(dòng)車(chē)前往廈門(mén)參加夏令營(yíng)活動(dòng),動(dòng)車(chē)票價(jià)格如表所示:(教師按成人票價(jià)購(gòu)買(mǎi),學(xué)生按學(xué)生票價(jià)購(gòu)買(mǎi)).

運(yùn)行區(qū)間

成人票價(jià)(元/張)

學(xué)生票價(jià)(元/張)

出發(fā)站

終點(diǎn)站

一等座

二等座

二等座

南靖

廈門(mén)

26

22

16

若師生均購(gòu)買(mǎi)二等座票,則共需1020元.
(1)參加活動(dòng)的教師有人,學(xué)生有人;
(2)由于部分教師需提早前往做準(zhǔn)備工作,這部分教師均購(gòu)買(mǎi)一等座票,而后續(xù)前往的教師和學(xué)生均購(gòu)買(mǎi)二等座票.設(shè)提早前往的教師有x人,購(gòu)買(mǎi)一、二等座票全部費(fèi)用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購(gòu)買(mǎi)一、二等座票全部費(fèi)用不多于1032元,則提早前往的教師最多只能多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一枚質(zhì)地均勻且四個(gè)面上分別標(biāo)有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.表示一個(gè)基本事件.

請(qǐng)寫(xiě)出所有基本事件;

求滿(mǎn)足條件“”為整數(shù)的事件的概率;

求滿(mǎn)足條件“”的事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點(diǎn)ESD的中點(diǎn).

(1)求證:直線(xiàn)SB∥平面ACE

(2)求證:直線(xiàn)AC⊥平面SBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),連接BM,MN,BN.

(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案