已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.

(Ⅰ)若∠APB=60°,試求點(diǎn)P的坐標(biāo);

(Ⅱ)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=時,求直線CD的方程.

 

【答案】

(Ⅰ) P(0,0)或P(,)(Ⅱ) x+y-3=0或x+7y-9=0

【解析】

試題分析:(1)設(shè)P(2m,m),由題可知MP=2,

所以(2m)2+(m-2)2=4,解之得m=0或m=.

故所求點(diǎn)P的坐標(biāo)為P(0,0)或P().

(2)由題意易知直線CD的斜率k存在,設(shè)直線CD的方程為y-1=k(x-2),

由題知圓心M到直線CD的距離為,

所以,解得,k=-1或k=-

故所求直線CD的方程為x+y-3=0或x+7y-9=0.

考點(diǎn):直線與圓的位置關(guān)系

點(diǎn)評:直線與圓相切,圓心到直線的距離等于圓的半徑;直線與圓相交,圓心到直線的距離,圓的半徑,弦長一半構(gòu)成直角三角形

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(2)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=
2
時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(2)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=
2
時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省宜昌一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(2)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=時,求直線CD的方程.

查看答案和解析>>

同步練習(xí)冊答案