【題目】已知橢圓C:1(a>b>0)經(jīng)過點(diǎn)(,1),F(0,1)是C的一個(gè)焦點(diǎn),過F點(diǎn)的動(dòng)直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的方程
(2)是否存在定點(diǎn)M(異于點(diǎn)F),對(duì)任意的動(dòng)直線l都有kMA+kMB=0,若存在求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】(1);(2)存在,M(0,2)
【解析】
(1)直接用橢圓的定義,橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,可求;
(2)由,將斜率表示出來,將直線的方程設(shè)出與橢圓方程聯(lián)立,代入斜率的式子與斜率無關(guān)可得的坐標(biāo);
(1)設(shè),由條件是的一個(gè)焦點(diǎn),
則另一個(gè)焦點(diǎn)為;
則由橢圓的定義由:;
所以,;
橢圓的方程:;
(2)假設(shè)存在,由對(duì)稱性可知在y軸上,設(shè)點(diǎn)
由對(duì)任意的動(dòng)直線都有,則直線的斜率存在;
設(shè)直線的方程為;設(shè),,,
由,則;
所以,,
,
即;
所以;
故存在定點(diǎn),對(duì)任意的動(dòng)直線都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形中,,,分別為,的中點(diǎn),,為中點(diǎn)現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體在圖②中,
(1)證明:;
(2)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海濕地如圖所示,A、B和C、D分別是以點(diǎn)O為中心在東西方向和南北方向設(shè)置的四個(gè)觀測點(diǎn),它們到點(diǎn)O的距離均為公里,實(shí)線PQST是一條觀光長廊,其中,PQ段上的任意一點(diǎn)到觀測點(diǎn)C的距離比到觀測點(diǎn)D的距離都多8公里,QS段上的任意一點(diǎn)到中心點(diǎn)O的距離都相等,ST段上的任意一點(diǎn)到觀測點(diǎn)A的距離比到觀測點(diǎn)B的距離都多8公里,以O為原點(diǎn),AB所在直線為x軸建立平面直角坐標(biāo)系xOy.
(1)求觀光長廊PQST所在的曲線的方程;
(2)在觀光長廊的PQ段上,需建一服務(wù)站M,使其到觀測點(diǎn)A的距離最近,問如何設(shè)置服務(wù)站M的位置?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一新款手機(jī),因其功能強(qiáng)大,外觀新潮,一上市便受到消費(fèi)者爭相搶購,銷量呈上升趨勢.散點(diǎn)圖是該款手機(jī)上市后前6周的銷售數(shù)據(jù).
(Ⅰ)根據(jù)散點(diǎn)圖,用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測該款手機(jī)第8周的銷量;
(Ⅱ)為了分析市場趨勢,該公司市場部從前6周的銷售數(shù)據(jù)中隨機(jī)抽取2周的數(shù)據(jù),求抽到的這2周的銷量均在20萬臺(tái)以下的概率.
參考公式:回歸直線方程,其中:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形ABSCD中,四邊形ABCD為矩形,AB=1,△BSC為邊長為2的正三角形,將△BSC沿BC折起,使得側(cè)面SAD垂直于平面ABCD,E、F分別為SA、DC的中點(diǎn).
(1)求證:EF∥面SBC;
(2)求四棱錐S﹣ABCD的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinπx,g(x)=x2﹣x+2,則( 。
A. 曲線y=f(x)+g(x)不是軸對(duì)稱圖形
B. 曲線y=f(x)﹣g(x)是中心對(duì)稱圖形
C. 函數(shù)y=f(x)g(x)是周期函數(shù)
D. 函數(shù)最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓.
(1)若圓與圓外切,求實(shí)數(shù)m的值;
(2)在(1)的條件下,若直線l與圓的相交弦長為且過點(diǎn),求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com