已知
a
=(2,3),
b
=(-4,7),則
b
a
上的投影為( 。
A、
13
5
B、
65
5
C、
13
D、
65
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:首先,求解
a
b
的夾角為θ,然后,根據(jù)投影的概念求解.
解答: 解:∵
a
=(2,3),
b
=(-4,7),
設(shè)
a
b
的夾角為θ,
∴cosθ=
a
b
|
a
||
b
|
=
-8+21
13
65
=
13
65
,
∴則
b
a
上的投影為
:|
b
|cosθ=
65
×
13
65
=
13

b
a
上的投影為
13

故選:C.
點(diǎn)評(píng):本題綜合考查了向量的夾角公式、投影的概念及其運(yùn)用等知識(shí),此題型是重要題型,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商店經(jīng)營(yíng)一批進(jìn)價(jià)為每件4元的商品,在市場(chǎng)調(diào)查時(shí)得到,此商品的銷售單價(jià)x與日銷售量y之間的一組數(shù)據(jù)滿足:
.
x
=6.5,
.
y
=7,
5
i=1
(xi-
.
x
)  (yi-
.
y
)  =-11
,
5
i=1
(xi-
.
x
2
=5
,則當(dāng)銷售單價(jià)x定為(取整數(shù))
 
 元時(shí),日利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD中,AD∥BC,∠BAD=45°,AD=2,AB=
2
,BC=1,P是邊AB所在直線上的動(dòng)點(diǎn),則|
PC
+2
PD
|的最小值為(  )
A、2
B、4
C、
5
2
2
D、
25
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin45°sin75°+cos75°cos45°=( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正△ABC的邊長(zhǎng)為2,則
AB
BC
=(  )
A、2
B、-2
C、2
3
D、-2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n∈R則“m>0且n>0”是“曲線
x2
m
+
y2
n
=1為橢圓”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a表示函數(shù)y=sinx(-π≤x≤π)與x軸圍成的圖形的面積,則復(fù)數(shù)z=
(-1+i)(a+i)
-i
(其中i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,4),
b
=(-1,5),向量k
a
+2
b
與向量
c
=(2,-3)垂直,則k的值是( 。
A、2
B、-
17
3
C、1
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求使得(3x+
1
x
x
n(n∈N*)的展開式中含有常數(shù)項(xiàng)的最小的n為?
(2)對(duì)于(1)中求得的n,從3名骨科,4名腦外科和5名內(nèi)科醫(yī)生中選派n人組成一個(gè)抗震救災(zāi)醫(yī)療小組,求骨科,腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)?(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案