拋物線x2=(2a-1)y的準(zhǔn)線方程為y=1,則實(shí)數(shù)a=( 。
A、
5
2
B、
3
2
C、-
1
2
D、-
3
2
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)準(zhǔn)線方程可求得
1-2a
4
=1,則a可得.
解答: 解:∵拋物線x2=(2a-1)y的準(zhǔn)線方程為y=1,∴
1-2a
4
=1,
解得a=-
3
2
,
故選:D.
點(diǎn)評:本題主要考查拋物線的基本性質(zhì).解決拋物線的題目時(shí),一定要先判斷焦點(diǎn)所在位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將1,2,3,4,5,6,7,8,9這9個(gè)正整數(shù)分別寫在三張卡片上,要求每一張卡片上的三個(gè)數(shù)中任意兩數(shù)之差都不在這張卡片上,現(xiàn)在第一張卡片上已經(jīng)寫有1和5,第二張卡片上寫有2,第三張卡片上寫有3,則第一張卡片上的另一個(gè)數(shù)字是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足條件:a1=
1
2
,an+1=
1+an
1-an
(n∈N+)
,則對n≤20的正整數(shù),an+an+1=
1
6
的概率為( 。
A、
1
20
B、
1
4
C、
1
5
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線(2a+b)x+y-1=0(a>0,b>0)經(jīng)過橢圓
x2
4
+
y2
3
=1的右焦點(diǎn),則
1
a
+
1
b
的最小值是( 。
A、
1
4
B、4
C、3+2
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,-1,2),
b
=(x,y,-4),且
a
b
,則x+y=( 。
A、8B、4C、-4D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是偶函數(shù),且在(0,+∞)上單調(diào)遞增的是( 。
A、y=x3
B、y=lgx
C、y=|x|
D、y=1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a6+a8=10,a3=1,則a11的值是( 。
A、15B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x),當(dāng)x∈(1,+∞)時(shí),(x-1)f′(x)-f(x)>0恒成立,a=f(2),b=
1
2
f(3),c=(
2
+1)f(
2
),則a、b、c的大小關(guān)系為(  )
A、c<a<b
B、b<c<a
C、a<c<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分別為AB,CB的中點(diǎn),M為底面△OBF的重心.
(Ⅰ)求證:平面ADF⊥平面CBF;
(Ⅱ)求證:PM∥平面AFC;
(Ⅲ)求多面體CD-AFEB的體積V.

查看答案和解析>>

同步練習(xí)冊答案