已知函數(shù),f '(x)為f(x)的導函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值,都有,求實數(shù)的最小值;
⑶若過點,可作曲線的三條切線,求實數(shù)的取值范圍.
⑴;⑵的最小值為;⑶.
解析試題分析:⑴,由是偶函數(shù)得.又,所以,由此可得解析式;
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)的圖像過坐標原點,且在點 處的切線斜率為.
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
科目:高中數(shù)學
來源:
題型:解答題
(14分)己知函數(shù)f (x)=ex,xR
科目:高中數(shù)學
來源:
題型:解答題
(本小題滿分12分)已知函數(shù),.
科目:高中數(shù)學
來源:
題型:解答題
設函數(shù)。
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)的圖象在與軸交點處的切線方程是.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
⑵對于區(qū)間上任意兩個自變量的值,都有,則只需即可.所以接下來就利用導數(shù)求在區(qū)間上的最大值與最小值,然后代入解不等式即可得的最小值.⑶易知點不在曲線上.凡是過某點的切線(不是在某點處的切線)的問題,都要設出切點坐標然后列方程組..
設切點為.則.又,∴切線的斜率為.
由此得,即.下面就考查這個方程的解的個數(shù).
因為過點,可作曲線的三條切線,所以方程有三個不同的實數(shù)解.即函數(shù)有三個不同的零點.接下來就利用導數(shù)結合圖象研究這個函數(shù)的零點的個數(shù).
試題解析:⑴∵,1分
由是偶函數(shù)得.又,所以3分
∴.4分
⑵令,即,解得.5分
(1)求實數(shù)的值;
(2) 求函數(shù)在區(qū)間上的最小值;
(Ⅲ)若函數(shù)的圖像上存在兩點,使得對于任意給定的正實數(shù)都滿足是以為直角頂點的直角三角形,且三角形斜邊中點在軸上,求點的橫坐標的取值范圍.
(Ⅰ)當時,求的極值;
(Ⅱ)當a>0時,討論的單調性;
(Ⅲ)若對任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。
(1)求 f (x)的反函數(shù)圖象上點(1,0)處的切線方程。
(2)證明:曲線y=f(x)與曲線y=有唯一公共點;
(3)設,比較與的大小,并說明理由。
(1)當時,求函數(shù)的單調區(qū)間和極值;
(2)若恒成立,求實數(shù)的值.
(Ⅰ)若時,函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間內不單調,求實數(shù)的取值范圍。
(I)求函數(shù)的解析式;
(II)設函數(shù),若的極值存在,求實數(shù)的取值范圍以及函數(shù)取得極值時對應的自變量的值.
版權聲明:本站所有文章,圖片來源于網絡,著作權及版權歸原作者所有,轉載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網安備42018502000812號