已知雙曲線=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為(  )
A.=1B.=1
C.=1D.=1
A
由x2+y2-6x+5=0知圓心C(3,0),半徑r=2.
=1的漸近線為bx±ay=0,且與圓C相切.
由直線與圓相切,得=2,
即5b2=4a2,①
因?yàn)殡p曲線右焦點(diǎn)為圓C的圓心,所以c=3,從而9=a2+b2,②
由①②聯(lián)立,得a2=5,b2=4,
故所求雙曲線方程為=1,選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>)
的右頂點(diǎn)和上頂點(diǎn),直線 lAB,l與x軸、y軸分別交于C,D兩點(diǎn),直線CE,DF為橢圓的切線,則CE與DF的斜率之積kCE•kDF等于(  )
A.±
a2
b2
B.±
a2-b2
a2
C.±
b2
a2
D.±
a2-b2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn)分別為F1(-c,0)和F2(c,0)(c>0),過點(diǎn)E(
a2
c
,0)
的直線與橢圓相交于A,B兩點(diǎn),且F1AF2B,|F1A|=2|F2B|.
(1)求橢圓的離心率;
(2)求直線AB的斜率;
(3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線F2B上有一點(diǎn)H(m,n)(m≠0)在△AF1C的外接圓上,求
n
m
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:(a>b>0)的一個(gè)焦點(diǎn)為,離心率為.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0,y0)為雙曲線外一點(diǎn),且點(diǎn)P到雙曲線C的兩條切線相互垂直,求點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線上的一點(diǎn)到一個(gè)焦點(diǎn)的距離等于1,那么點(diǎn)到另一個(gè)焦點(diǎn)的距離為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線=1(a·b≠0,且a≠b)與直線x+y-1=0相交于P,Q兩點(diǎn),且=0(O為原點(diǎn)),則的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線-y2=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).求直線A1P與A2Q交點(diǎn)的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1的右焦點(diǎn)為(3,0),則該雙曲線的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2分別是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)M,使,O為坐標(biāo)原點(diǎn),且,則該雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案