橢圓G:的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的一點(diǎn),且滿(mǎn)足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時(shí)橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線(xiàn)l與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)的直線(xiàn)對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由
(1);(2)(i)所求橢圓方程為,(ⅱ)當(dāng)時(shí),A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線(xiàn)對(duì)稱(chēng)。
(I)設(shè)M(x0,y0
                ①
 ②
由②得代入①式整理得

解得

(Ⅱ)(i)當(dāng)
設(shè)H(x,y)為橢圓上一點(diǎn),則

若0
(舍去)
若b≥3,當(dāng)y=-3時(shí),|HN|2有最大值2b2+18
由2b2+18=50得b2=16
∴所求橢圓方程為
(ii)設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則由
            ③
又直線(xiàn)PQ⊥直線(xiàn)l   ∴直線(xiàn)PQ方程為
將點(diǎn)Q(x0,y0)代入上式得,   ④
由③④得Q
(解1)而Q點(diǎn)必在橢圓內(nèi)部  
由此得

故當(dāng)時(shí)A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線(xiàn)對(duì)稱(chēng)
(解2)∴AB所在直線(xiàn)方程為


顯然1+2k2≠0


直線(xiàn)l與橢圓有兩不同的交點(diǎn)A、B ∴△>0
解得

故當(dāng)時(shí),A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線(xiàn)對(duì)稱(chēng)。
(ii)另解;設(shè)直線(xiàn)l的方程為y=kx+b


設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則
     ③
又直線(xiàn)PQ⊥直線(xiàn)l   ∴直線(xiàn)PQ方程為
將點(diǎn)Q(x0,y0)代入上式得,   ④
將③代入④
∵x1,x2是(*)的兩根

⑤代入⑥得
∴當(dāng)時(shí),A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線(xiàn)對(duì)稱(chēng)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,.過(guò)的直線(xiàn)交橢圓于兩點(diǎn),過(guò)的直線(xiàn)交橢圓于兩點(diǎn),且,垂足為
(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,證明:
(Ⅱ)求四邊形的面積的最小值.
 
 
 
 
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),一條準(zhǔn)線(xiàn)的方程為,過(guò)橢圓的左焦點(diǎn),且方向向量為的直線(xiàn)交橢圓于兩點(diǎn),的中點(diǎn)為
(1)求直線(xiàn)的斜率(用、表示);
(2)設(shè)直線(xiàn)的夾角為,當(dāng)時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且經(jīng)過(guò)點(diǎn)A ;
(1)求滿(mǎn)足條件的橢圓方程;
(2)求該橢圓的頂點(diǎn)坐標(biāo),長(zhǎng)軸長(zhǎng),短軸長(zhǎng),離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓C,經(jīng)過(guò)橢圓C的右焦點(diǎn)F且斜率為kk≠0)的直線(xiàn)l交橢圓G于A、B兩點(diǎn),M為線(xiàn)段AB的中點(diǎn),設(shè)O為橢圓的中心,射線(xiàn)OM交橢圓于N點(diǎn).

(1)是否存在k,使對(duì)任意m>0,總有成立?若存在,求出所有k的值;
(2)若,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量,經(jīng)過(guò)定點(diǎn)且方向向量為的直線(xiàn)與經(jīng)過(guò)定點(diǎn)且方向向量為的直線(xiàn)交于點(diǎn)M,其中R,常數(shù)a>0.
(1)求點(diǎn)M的軌跡方程;
(2)若,過(guò)點(diǎn)的直線(xiàn)與點(diǎn)M的軌跡交于C、D兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上一點(diǎn)到直線(xiàn)與到點(diǎn)(-2,0)的距離之比為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)P(x,y)是+=1上一點(diǎn),則x+y的最小值為_(kāi)_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的左、右焦點(diǎn)分別為,若橢圓上存在一點(diǎn)使,則該橢圓的離心率的取值范圍為          

查看答案和解析>>

同步練習(xí)冊(cè)答案