【題目】為了調(diào)查“五一”小長假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機(jī)抽取500人進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)
選擇“有水的地方” | 不選擇“有水的地方” | 合計 | |
男 | 90 | 110 | 200 |
女 | 210 | 90 | 300 |
合計 | 300 | 200 | 500 |
(Ⅰ)據(jù)此樣本,有多大的把握認(rèn)為選擇“有水的地方”與性別有關(guān);
(Ⅱ)若以樣本中各事件的頻率作為概率估計全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中選擇“有水的地方”的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的數(shù)學(xué)期望和方差.
附臨界值表及參考公式:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,n=a+b+c+d.
【答案】解:(Ⅰ) ,
∴有99.9%的把握認(rèn)為選擇“有水的地方”與性別有關(guān);
(Ⅱ)估計該市的所有出游旅客中任一人選擇“有水的地方”出游的概率為 ,
X的可能取值為0,1,2,3,由題意,得X~B(3, ),
∴隨機(jī)變量X的數(shù)學(xué)期望 ,
方差
【解析】(Ⅰ)卡方的大小可以決定是否拒絕原來的統(tǒng)計假設(shè),如果算出的卡方值較大就拒絕原來的統(tǒng)計假設(shè),也就拒絕“事件A與B無關(guān)”,從而就認(rèn)為它們是有關(guān)的了;(Ⅱ)先根據(jù)題意判斷X~B(3,),再求得二項分布的期望 E ( X ) =np與方差 D ( X ) =npq.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:(x﹣1)2+y2=1與曲線C2:y(y﹣mx﹣m)=0,則曲線C2恒過定點(diǎn);若曲線C1與曲線C2有4個不同的交點(diǎn),則實數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(1)求證:A,B,C,P四點(diǎn)共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且 為純虛數(shù)( 是z的共軛復(fù)數(shù)).
(1)設(shè)復(fù)數(shù) ,求|z1|;
(2)設(shè)復(fù)數(shù) ,且復(fù)數(shù)z2所對應(yīng)的點(diǎn)在第四象限,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點(diǎn)( ,1),且以橢圓短軸的兩個端點(diǎn)和一個焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x,y)是橢圓C上的動點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點(diǎn),且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+a(x2﹣3x+2),其中a為參數(shù).
(1)當(dāng)a=0時,求函數(shù)f(x)在x=1處的切線方程;
(2)討論函數(shù)f(x)極值點(diǎn)的個數(shù),并說明理由;
(3)若對任意x∈[1,+∞),f(x)≥0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com