【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C1的參數(shù)方程為 ,(α為參數(shù),且α∈[0,π]),曲線C2的極坐標(biāo)方程為ρ=﹣2sinθ.
(Ⅰ)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(Ⅱ)若P是C1上任意一點(diǎn),過(guò)點(diǎn)P的直線l交C2于點(diǎn)M,N,求|PM||PN|的取值范圍.
【答案】解:(1)消去參數(shù)可得x2+y2=1,由α∈[0,π),則﹣1x1,0y1, ∴曲線C1是x2+y2=1在x軸上方的部分,
∴曲線C1的極坐標(biāo)方程為ρ=1(0θπ).
曲線C2的直角坐標(biāo)方程為x2+(y+1)2=1;
(Ⅱ)設(shè)P(x0 , y2),則0y01,直線l的傾斜角為α,
則直線l的參數(shù)方程為:{x=x0+tcosαy=y0+tsinα}(t為參數(shù)).
代入C2的直角坐標(biāo)方程得(x0+tcosα)2+(y0+tsinα+1)2=1,
由直線參數(shù)方程中t的幾何意義可知|PM||PN|=|1+2y0|,
因?yàn)?y21,
∴|PM||PN|=∈[1,3]
【解析】(1)求出C1的普通方程,即可求C1的極坐標(biāo)方程,利用極坐標(biāo)方程與直角坐標(biāo)方程的互化方法得出C2的直角坐標(biāo)方程;(2)直線l的參數(shù)方程,代入C2的直角坐標(biāo)方程得(x0+tcosα)2+(y0+tsinα+1)2=1,由直線參數(shù)方程中t的幾何意義可知|PM||PN|=|1+2y0|,即可求|PM||PN|的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率e= ,左、右焦點(diǎn)分別為F1、F2 , 定點(diǎn),P(2, ),點(diǎn)F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),直線F2M、F2N的傾斜角分別為α、β且α+β=π,求證:直線l過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且三角形的面積S= accosB.
(1)求角B的大。
(2)若a=2 ,點(diǎn)D在AB的延長(zhǎng)線上,且AD=3,cos∠ADC= ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】牛頓法求方程f(x)=0近似根原理如下:求函數(shù)y=f(x)在點(diǎn)(xn , f(xn))處的切線y=f′(xn)(x﹣xn)+f(xn),其與x軸交點(diǎn)橫坐標(biāo)xn+1=xn﹣ (n∈N*),則xn+1比xn更靠近f(x)=0的根,現(xiàn)已知f(x)=x2﹣3,求f(x)=0的一個(gè)根的程序框圖如圖所示,則輸出的結(jié)果為( )
A.2
B.1.75
C.1.732
D.1.73
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.現(xiàn)已畫(huà)出函數(shù)在軸左側(cè)的圖象,如圖所示,根據(jù)圖象:
(1)請(qǐng)將函數(shù)的圖象補(bǔ)充完整并寫(xiě)出該函數(shù)的增區(qū)間(不用證明).
(2)求函數(shù)的解析式.
(3)若函數(shù),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=k(x﹣3),k∈R,若f(x)>g(x)對(duì)任意的x∈R都成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2cosθ﹣6sinθ+ =0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com