如圖,橢圓的中心為原點(diǎn),長軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點(diǎn),過、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.
(1);(2).

試題分析:(1)根據(jù)題干條件求出、的值,進(jìn)而求出的值,從而確定橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)為,并設(shè)橢圓上任意一點(diǎn)的坐標(biāo)為,求出,根據(jù)題中條件得到點(diǎn)的坐標(biāo)使得取得最小值,從而得出,最后再求出面積的表達(dá)式,結(jié)合二次函數(shù)或基本不等式求出的最大值.
試題解析:(1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,
由題意得,解的,,,
所求橢圓的標(biāo)準(zhǔn)方程為
(2)由橢圓的對(duì)稱性,可設(shè),又設(shè)是橢圓上任意一點(diǎn),則
,
所以當(dāng)時(shí),取最小值,
又由題意得:是橢圓上任意一點(diǎn)到的距離最小的點(diǎn),
設(shè),因此當(dāng)時(shí),取最小值,
又因,所以,
由對(duì)稱性知,故,所以
S
所以當(dāng)時(shí),的面積取得最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),點(diǎn)是拋物線與軸正半軸交點(diǎn),是以為直角頂點(diǎn)的直角三角形.試探究直線是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,在第一和第四象限的交點(diǎn)分別為.
(1)若是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)試判斷圓軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓C:的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2斜率的取值范圍是[﹣2,﹣1],那么直線PA1斜率的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是任意實(shí)數(shù),則方程所表示的曲線一定不是(    )
A.直線B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程的曲線即為函數(shù)的圖象,對(duì)于函數(shù),下列命題中正確的是.(請寫出所有正確命題的序號(hào))
①函數(shù)上是單調(diào)遞減函數(shù);②函數(shù)的值域是;
③函數(shù)的圖象不經(jīng)過第一象限;④函數(shù)的圖象關(guān)于直線對(duì)稱;
⑤函數(shù)至少存在一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是雙曲線的左焦點(diǎn),離心率為e,過F且平行于雙曲線漸近線的直線與圓交于點(diǎn)P,且點(diǎn)P在拋物線上,則e2 =(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案