橢圓中,以點M(-1,2)為中點的弦所在的直線斜率為     ▲     
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,短軸的長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若經(jīng)過點的直線與橢圓交于兩點,滿足,求的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題14分) 設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點,與雙曲線交于不同兩點,,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長軸長是短軸長的2倍,則橢圓的離心率等于(   )
A. B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點.
(1)若M是該橢圓上的一個動點,求的最大值和最小值;
(2)設(shè)過定點(0,2)的直線與橢圓交于不同的兩點A、B,且為鈍角,(其中O為坐標(biāo)原點),求直線的余斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分分)
已知橢圓的中心在坐標(biāo)原點,兩個焦點分別為、,一個頂點為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)對于軸上的點,橢圓上存在點,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1上一點P到左焦點的距離為,則P到右準(zhǔn)線的距離為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程表示焦點在軸上的橢圓,則的取值范圍是  ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦距為2,則的值為     .  

查看答案和解析>>

同步練習(xí)冊答案