(2012•安徽模擬)設x6=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5+a6(x-1)6,則a3=
20
20
分析:由于x=(x-1)+1,x6=[(x-1)+1]6=
C
0
6
+
C
1
6
•(x-1)1+
C
2
6
•(x-1)2+…+
C
6
6
•(x-1)6,與已知對比可得a3=
C
3
6
,從而可求得a3
解答:解:∵x6=[(x-1)+1]6=
C
0
6
+
C
1
6
•(x-1)1+
C
2
6
•(x-1)2+…+
C
6
6
•(x-1)6
=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5+a6(x-1)6,
∴a3=
C
3
6
=20.
故答案為:20.
點評:本題考查二項式定理的應用,觀察分析得到an=
C
n
6
是關鍵,考查分析與轉(zhuǎn)化的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)在復平面內(nèi),復數(shù)z=
1+i
i-2
對應的點位于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)定義在R上的奇函數(shù)f(x)滿足:x≤0時f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,則f(2)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)(理)若變量x,y滿足約束條件
x+y-3≤0
x-y+1≥0
y≥1
,則z=|y-2x|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)下列說法不正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及當取最大值時x的取值集合.
(2)在三角形ABC中,a,b,c分別是角A,B,C所對的邊,對定義域內(nèi)任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習冊答案