定義運算:a*b=
b(當(dāng)a≤b時)
a(當(dāng)a>b時)
,對于函數(shù)f(x)和g(x),函數(shù)|f(x)-g(x)|在閉區(qū)間[a,b]上的最大值稱為f(x)與g(x)在閉區(qū)間[a,b]上的“絕對差”,記為
a≤x≤b
(f(x),g(x)),則
0≤x≤
π
2
(sinx*cosx,1)=
 
考點:函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,先化簡sinx*cosx=
cosx,0≤x≤
π
4
sinx,
π
4
<x≤
π
2
,再求|sinx*cosx-1|=
1-cosx,0≤x≤
π
4
1-sinx,
π
4
<x≤
π
2
的最大值,從而求得.
解答: 解:由題意,sinx*cosx=
cosx,0≤x≤
π
4
sinx,
π
4
<x≤
π
2
,
則|sinx*cosx-1|=
1-cosx,0≤x≤
π
4
1-sinx,
π
4
<x≤
π
2
,
則0≤|sinx*cosx-1|≤1-
2
2

0≤x≤
π
2
(sinx*cosx,1)=1-
2
2
,
故答案為:1-
2
2
點評:本題考查了分段函數(shù)的最值問題及學(xué)生對新定義的接受能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
y≥|x+1|
x+3y-3≤0
,則z=2x+y的最大值為( 。
A、1B、-1C、-2D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x2-ax+3),當(dāng)x∈(0,2)時,函數(shù)f(x)恒有意義,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個小朋友在一次玩皮球時,偶然發(fā)現(xiàn)一個現(xiàn)象:球從某高度落下后,每次都反彈回原高度的
1
3
,再落下,再反彈回上次高度的
1
3
,如此反復(fù).假設(shè)球從100cm處落下,那么第10次下落的高度是多少?在第10次落地時共經(jīng)過多少路程?試用程序語言表示其算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(
1
tanα
+tanα)cosα等于( 。
A、tanα
B、
1
sinα
C、cosα
D、
1
tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,C是圓O上的點.P是圓所在的面外一點.設(shè)Q為PA的中點,G為AOC的重心.求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:函數(shù)f(x)=lnx+4x-5在(0,+∞)內(nèi)僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(6,a)在過兩點A(-1,3),B(5,-2)的直線上,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2+ax-2=0在區(qū)間(1,+∞) 上有解,則實數(shù)a的取值范圍為(  )

查看答案和解析>>

同步練習(xí)冊答案