(2013•西城區(qū)一模)已知向量
i
=(1,0),
j
=(0,1).若向量
i
j
與λ
i
+
j
垂直,則實數(shù)λ=
0
0
分析:由題意可先求出,
i
j
,λ
i
+
j
,然后由
i
j
λ
i
+
j
垂直,結(jié)合向量的數(shù)量積的性質(zhì)可求λ
解答:解:由題意可得,
i
j
=(1,λ),λ
i
+
j
=(λ,1)
i
j
λ
i
+
j
垂直
(
i
j
)•(λ
i
+
j
)
=2λ=0
∴λ=0
故答案為:0
點評:本題主要考查了向量的數(shù)量積性質(zhì)的坐標表示,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)從甲、乙等5名志愿者中選出4名,分別從事A,B,C,D四項不同的工作,每人承擔(dān)一項.若甲、乙二人均不能從事A工作,則不同的工作分配方案共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)某商區(qū)停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人在該商區(qū)臨時停車,兩人停車都不超過4小時.
(Ⅰ)若甲停車1小時以上且不超過2小時的概率為
1
3
,停車付費多于14元的概率為
5
12
,求甲停車付費恰為6元的概率;
(Ⅱ)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)設(shè)等比數(shù)列{an}的公比為q,前n項和為Sn,且a1>0.若S2>2a3,則q的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)記實數(shù)x1,x2,…,xn中的最大數(shù)為max{x1,x2,…,xn},最小數(shù)為min{x1,x2,…,xn}.設(shè)△ABC的三邊邊長分別為a,b,c,且a≤b≤c,定義△ABC的傾斜度為t=max{
a
b
,
b
c
,
c
a
}•min{
a
b
,
b
c
,
c
a
}

(。┤簟鰽BC為等腰三角形,則t=
1
1
;
(ⅱ)設(shè)a=1,則t的取值范圍是
[1,
1+
5
2
)
[1,
1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)如圖,正六邊形ABCDEF的邊長為1,則
AC
DB
=
-
3
2
-
3
2

查看答案和解析>>

同步練習(xí)冊答案