若雙曲線與x2+4y2=64有相同的焦點,它的一條漸近線方程是數(shù)學公式,則雙曲線的方程是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:依題意,可求得x2+4y2=64的焦點,也是雙曲線的焦點,再由雙曲線的一條漸近線方程即可求得雙曲線的方程.
解答:∵x2+4y2=64?+=1,
∴該橢圓的焦點在x軸,且焦點坐標為:(±4,0);
∵雙曲線與x2+4y2=64有相同的焦點,
∴該雙曲線的焦點在x軸,且焦點坐標為:(±4,0),可排除B,C,D;
對于A,-=1,其焦點坐標為:(±4,0),漸近線方程為y=±x=±x,其中之一即為x+y=0,符合題意.
故選A.
點評:本題考查橢圓的性質(zhì)與雙曲線的性質(zhì)及標準方程,求得雙曲線的焦點是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:天利38套《2008全國各省市高考模擬試題匯編(大綱版)》、數(shù)學文 大綱版 題型:044

如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0

(Ⅰ)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(Ⅱ)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為P,且,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練24練習卷(解析版) 題型:選擇題

已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4,則拋物線的方程為(  )

(A)y2=4x (B)x2=4y

(C)y2=8x (D)x2=8y

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準線與雙曲線5x2-y2= 20的兩條漸近線圍成的三角形的面積等于,則拋物線的方程為

    A.y2=4x                  B.y2=8x                  C.x2=4y    D.x2=8y

查看答案和解析>>

同步練習冊答案