對于平面M與平面N,有下列條件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M內(nèi)不共線的三點到N的距離相等;④l,m為兩條平行直線,且l∥M,m∥N;⑤l,m是異面直線,且l∥M,m∥M;l∥N,m∥N,則可判定平面M與平面N平行的條件是________(填正確結(jié)論的序號).
②⑤
由面面平行的判定定理及性質(zhì)定理知,只有②⑤能判定M∥N.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,平面,依次是的中點.

(1)求證:;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,正方體ABCD-A1B1C1D1中,A1C與截面DBC1交于O點,AC,BD交于M點,求證:C1,O,M三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二面角α-AB-β為120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,則CD的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知平面α,β和直線m,給出下列條件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)當滿足條件________時,有m∥β;
(2)當滿足條件________時,有m⊥β(填所選條件的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,點M,N分別在線段AB1,BC1上,且AM=BN.以下結(jié)論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,其中有可能成立的個數(shù)為(  )
A.4 B.3C.2 D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題正確的是(  )
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱垂直于底面,,,、分別為、的中點.
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為,M,N分別是AC,BC的中點,則EM,AN所成角的余弦值等于________.

查看答案和解析>>

同步練習冊答案