【題目】已知橢圓:的離心率為,其左焦點與拋物線的焦點重合.
(1)求橢圓的方程;
(2)過動點的直線交軸于點,交橢圓于點,在第一象限,,過點做軸的垂線交橢圓于點,連接并延長交橢圓于另一點.設直線的斜率分別為,證明:為定值.
科目:高中數(shù)學 來源: 題型:
【題目】某蛋糕店制作并銷售一款蛋糕,當天每售出個利潤為元,未售出的每個虧損元.根據(jù)以往天的統(tǒng)計資料,得到如下需求量表,元旦這天,此蛋糕店制作了個這種蛋糕.以(單位:個, )表示這天的市場需求量. (單位:元)表示這天售出該蛋糕的利潤.
需求量/個 | |||||
天數(shù) | 10 | 20 | 30 | 25 | 15 |
(1)將表示為的函數(shù),根據(jù)上表,求利潤不少于元的概率;
(3)元旦這天,該店通過微信展示打分的方式隨機抽取了名市民進行問卷調(diào)查,調(diào)查結(jié)果如下表所示,已知在購買意愿強的市民中,女性的占比為.
購買意愿強 | 購買意愿弱 | 合計 | |
女性 | 28 | ||
男性 | 22 | ||
合計 | 28 | 22 | 50 |
完善上表,并根據(jù)上表,判斷是否有的把握認為市民是否購買這種蛋糕與性別有關?
附: .
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面為直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點,△PAD為正三角形,M是棱PC上的一點(異于端點).
(1)若M為PC的中點,求證:PA∥平面BME;
(2)是否存在點M,使二面角MBED的大小為30°.若存在,求出點M的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=ln x+x2-ax(a為常數(shù)).
(1)若x=1是函數(shù)f (x)的一個極值點,求a的值;
(2)當0<a≤2時,試判斷f (x)的單調(diào)性;
(3)若對任意的a∈(1,2),x0∈[1,2],不等式f (x0)>mln a 恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2019年的利潤(萬元)關于年產(chǎn)量x(百輛)的函數(shù)關系式;(利潤=銷售額成本)
(2)2019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明的奇偶性;
(2)用單調(diào)性的定義證明函數(shù)在其定義域上是增函數(shù);
(3)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點的橫坐標都縮短為原來的倍,縱坐標坐標都伸長為原來的倍,得到曲線,在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸非負半軸為極軸)中,直線的極坐標方程為.
(1)求直線和曲線的直角坐標方程;
(2)設點是曲線上的一個動點,求它到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,.過的中點作于點,連接,.
(Ⅰ)證明:平面;
(Ⅱ)若平面與平面所成的銳二面角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,命題方程表示焦點在軸上的橢圓,命題方程表示雙曲線.
(1)若命題是真命題,求實數(shù)的范圍;
(2)若命題“或”為真命題,“且”是假命題,求實數(shù)的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com