【題目】已知△ABC中,AB=AC,D是△ABC外接圓上 上的點(diǎn)(不與點(diǎn)A、C重合),延長(zhǎng)BD至F.

(1)求證:AD延長(zhǎng)線DF平分∠CDE;
(2)若∠BAC=30°,△ABC中BC邊上的高為2+ ,求△ABC外接圓的面積.

【答案】
(1)證明:如圖,∵A,B,C,D四點(diǎn)共圓,∴∠CDF=∠ABC.

又AB=AC,∴∠ABC=∠ACB,

且∠ADB=∠ACB,∴∠ADB=∠CDF,

又由對(duì)頂角相等得∠EDF=∠ADB,故∠EDF=∠CDF,

即AD的延長(zhǎng)線DF平分∠CDE


(2)解:設(shè)O為外接圓圓心,連接AO并延長(zhǎng)交BC于H,則AH⊥BC.連接OC,

由題意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°,

設(shè)圓半徑為r,則r+ r=2+ ,得r=2,外接圓的面積為4π.


【解析】(1)根據(jù)A,B,C,D四點(diǎn)共圓,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,從而得解.(2)設(shè)O為外接圓圓心,連接AO并延長(zhǎng)交BC于H,則AH⊥BC.連接OC,設(shè)圓半徑為r,則r+ r=2+ ,求出r,即可求△ABC外接圓的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,分別是的中點(diǎn),且.

1)求直線所成角的大;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣

(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)若曲線只有一個(gè)公共點(diǎn),求的值.

(2)為曲線上的兩點(diǎn),且,求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0),e= ,其中F是橢圓的右焦點(diǎn),焦距為2,直線l與橢圓C交于點(diǎn)A、B,點(diǎn)A,B的中點(diǎn)橫坐標(biāo)為 ,且 (其中λ>1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抽樣統(tǒng)計(jì)甲、乙兩位射擊運(yùn)動(dòng)員的5次訓(xùn)練成績(jī)(單位:環(huán)),結(jié)果如下:

運(yùn)動(dòng)員

第一次

第二次

第三次

第四次

第五次

87

91

90

89

93

89

90

91

88

92

則成績(jī)較為穩(wěn)定(方差較。┑哪俏贿\(yùn)動(dòng)員成績(jī)的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x﹣1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地服務(wù)民眾,某共享單車公司通過向共享單車用戶隨機(jī)派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎(jiǎng)券、獲得2元獎(jiǎng)券的概率分別是0.5、0.2,且各次獲取騎行券的結(jié)果相互獨(dú)立.

(I)求用戶騎行一次獲得0元獎(jiǎng)券的概率;

(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案