2、給出下列四個命題:
①命題“若X2=1,則x=1”的否命題為:“若:x2=1,則x≠0”;
②命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”;
③命題“若:x=y,則sinx=siny”的逆否命題為真命題;
④“x=-1”是“x2-5x-6=0的必要不充分條件.
其中真命題的個數(shù)是( 。
分析:①根據(jù)否命題的定義:如果兩個命題中一個命題的條件和結論分別是另一個命題的條件和結論的否定,則這兩個命題稱互為否命題,把題中條件與結論互換;
②根據(jù)否命題的定義把小于改為大于等于;
③利用三角函數(shù)的知識看x=y與sinx=siny是否能夠互相,判斷原命題的真假,從而得出其逆否命題的真假;
④解出方程x2-5x-6=0的根,再判斷其與x=-1的邏輯關系;
解答:解:①若x2=1,則x=1”的否命題:若為x=1則x2=1;故①錯誤;
②命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1≥0”,故②錯誤;
③∵x=y?sinx=siny,
反之如果sinx=siny,則x=y+kπ(k∈Z),
∴原命題是真命題,∴原命題的逆否命題為真命題,故③正確;
④∵x2-5x-6=0,∴(x+1)(x-6)=0,
解得x=-1或6,
∴x=-1?x=-1或6,反之則不能,
∴“x=-1”是“x2-5x-6=0的充分不必要條件,故④錯誤.
∴真命題的個數(shù)是 1,
故選A.
點評:此題考查的知識面比較廣,主要考查四種邏輯關系,解題的關鍵是將各個命題的內容具體化使之成為簡單的命題,然后再求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習冊答案