精英家教網 > 高中數學 > 題目詳情

【題目】如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1 , F2 , 線段OF1 , OF2的中點分別為B1 , B2 , 且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;
(2)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2 , 求直線l的方程.

【答案】
(1)解:設橢圓的方程為 ,F(xiàn)2(c,0)

∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2為直角,從而|OA|=|OB2|,即

∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴

在△AB1B2中,OA⊥B1B2,∴S= |B1B2||OA|=

∵S=4,∴b2=4,∴a2=5b2=20

∴橢圓標準方程為 ;


(2)解:由(1)知B1(﹣2,0),B2(2,0),由題意,直線PQ的傾斜角不為0,故可設直線PQ的方程為x=my﹣2

代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16=0①

設P(x1,y1),Q(x2,y2),

,

,

=

∵PB2⊥QB2,∴

,∴m=±2

所以滿足條件的直線有兩條,其方程分別為x+2y+2=0和x﹣2y+2=0.


【解析】(1)設橢圓的方程為 ,F(xiàn)2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2為直角,從而 ,利用c2=a2﹣b2 , 可求 ,又S= |B1B2||OA|= =4,故可求橢圓標準方程;(2)由(1)知B1(﹣2,0),B2(2,0),由題意,直線PQ的傾斜角不為0,故可設直線PQ的方程為x=my﹣2,代入橢圓方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韋達定理及PB2⊥QB2 , 利用 可求m的值,進而可求直線l的方程.
【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求證二面角A1﹣BC1﹣B1的余弦值;
(3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),證明:
(1)對每個n∈N+ , 存在唯一的x∈[ ,1],滿足fn(xn)=0;
(2)對于任意p∈N+ , 由(1)中xn構成數列{xn}滿足0<xn﹣xn+p

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結束.設甲每次投籃投中的概率為 ,乙每次投籃投中的概率為 ,且各次投籃互不影響.
(1)求甲獲勝的概率;
(2)求投籃結束時甲的投籃次數ξ的分布列與期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等比數列{an}的各項均為正數,且2a1+3a2=1, =9a2a6.

(1)求數列{an}的通項公式;

(2)設bn=log3a1+log3a2+…+log3an,求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把函數y=cos2x+1的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),然后向左平移1個單位長度,再向下平移1個單位長度,得到的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老人,結果如下:

(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

(Ⅱ)能否有99℅的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

(Ⅲ)根據(Ⅱ)的結論,能否提出更好的調查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。

是否需要志愿者

性別

需要

40

30

不需要

160

270

參考數據:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)有小學150所,中學75所,大學25所.先采用分層抽樣的方法從這些學校中抽取30所學校對學生進行視力調查,應從小學中抽取 18 所學校,中學中抽取所學校.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某公司為鄭州園博園生產某特許商品,該公司年固定成本為10萬元,每生產千件需另投入2 .7萬元,設該公司年內共生產該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數解析式;

〔II〕年產量為多少千件時,該公司在該特許商品的生產中所獲年利潤最大?

查看答案和解析>>

同步練習冊答案