(本小題滿分12分)已知橢圓經(jīng)過點,一個焦點是
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓軸的兩個交點為,點在直線上,直線、分別與橢圓交于、兩點.試問:當(dāng)點在直線上運動時,直線是否恒經(jīng)過定點?證明你的結(jié)論.
(本小題滿分12分)
解:(I)方法1:橢圓的一個焦點是 ,
,             ………………(2分)
,∴,∴橢圓方程為       ………………(4分)
方法2:,可設(shè)橢圓方程為         ………………(2分)
在橢圓上,所以(舍去)
∴橢圓方程為                          ………………(4分)
(II)

方法1:當(dāng)點軸上時,、分別與重合,
若直線通過定點,則必在軸上,設(shè),………………(6分)
當(dāng)點不在軸上時,設(shè)、,
直線方程,方程,
代入
解得,,
,              ……………(8分)
代入
解得,,
,               ………………(10分)
,

,,
∴當(dāng)點在直線上運動時,直線恒經(jīng)過定點.……………(12分)
方法2:直線恒經(jīng)過定點,證明如下:
當(dāng)斜率不存在時,直線軸,通過點,……………(6分)
當(dāng)點不在軸上時,設(shè)、,,
直線方程,方程,
代入,
,∴,……………(8分)
代入
,…………(10分)
,直線恒經(jīng)過定點.        ………………(12分)
方法3:∵、三點共線,、三點也共線,
是直線與直線的交點,
當(dāng)斜率存在時,設(shè),代入,
,
直線方程,直線方程,
分別代入,得,,
,即
,
對任意變化的都成立,只能,
∴直線,通過點
當(dāng)斜率不存在時,直線軸,通過點,……………(10分)
∴當(dāng)點在直線上運動時,直線恒經(jīng)過定點
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為坐標(biāo)原點,為橢圓軸正半軸上的焦點,過且斜率為的直線交與兩點,點滿足.

(1)證明:點上;
(2)設(shè)點關(guān)于點的對稱點為,證明:、、四點在同一圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓 ()的一個焦點坐標(biāo)為,且長軸長是短軸長的倍.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點,橢圓與直線相交于兩個不同的點,線段的中點為,若直線的斜率為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的焦點為頂點,頂點為焦點的橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分))已知橢圓C過點,兩個焦點為,,O為坐標(biāo)原點。
(I)求橢圓C的方程;
(2)直線l過 點A(—1,0),且與橢圓C交于P,Q兩點,求△BPQ面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,直線軸交于點,點是橢圓上異于的動點,直線分別交直線兩點.證明:當(dāng)點在橢圓上運動時,恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓經(jīng)過點(p,q),離心率其中p,q分別表示標(biāo)準(zhǔn)正態(tài)分布的期望值與標(biāo)準(zhǔn)差。

(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A,B兩點,點A關(guān)于x軸的對稱點為。①試建立的面積關(guān)于m的函數(shù)關(guān)系;②莆田十中高三(1)班數(shù)學(xué)興趣小組通過試驗操作初步推斷:“當(dāng)m變化時,直線與x軸交于一個定點”。你認(rèn)為此推斷是否正確?若正確,請寫出定點坐標(biāo),并證明你的結(jié)論;若不正確,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左右焦點分別為,P為橢圓上一點,且
,則橢圓的離心率e=__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.       已知定圓圓心為A;動圓M過點且與圓A相切,圓心M 的坐標(biāo)為,它的軌跡記為C。
(1)求曲線C的方程;
(2)過一點N(1,0)作兩條互相垂直的直線與曲線C分別交于點P和Q,試問這兩條直線能否使得向量互相垂直?若存在,求出點P,Q的橫坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案