如圖所示,已知直線FD和△ABC的BC邊交于D,與AC邊交于E,與BA的延長線交于F,且BD=DC,求證:AE·FB=EC·FA.

答案:
解析:

  證明:過A作AG∥BC,交DF于G點(diǎn).

  因?yàn)锳G∥BD,

  所以

  又因?yàn)锽D=DC,

  所以

  因?yàn)锳G∥DC,

  所以

  所以,

  即AE·FB=EC·FA.

  分析:本題要證AE·FB=EC·FA,只要證即可,由于沒有直接聯(lián)系,因此必須尋找過渡比將它們聯(lián)系起來,因此考慮添加平行線進(jìn)行構(gòu)造.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知直線l的斜率為k且過點(diǎn)Q(-3,0),拋物線C:y2=16x,直線與拋物線l有兩個不同的交點(diǎn),F(xiàn)是拋物線的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動點(diǎn).
(1)求|PA|+|PF|的最小值;
(2)求k的取值范圍;
(3)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知直線l的斜率為k且過點(diǎn)Q(-3,0),拋物線C:y2=16x,直線與拋物線l有兩個不同的交點(diǎn),F(xiàn)是拋物線的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動點(diǎn).
(1)求|PA|+|PF|的最小值;
(2)求k的取值范圍;
(3)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知點(diǎn)F的坐標(biāo)為(0,1),直線l的方程為y+2=0,動點(diǎn)M到點(diǎn)F的距離比它到定直線l的距離小1,求動點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市長河高中高三市二測(第六次測試)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示,已知直線l的斜率為k且過點(diǎn)Q(-3,0),拋物線C:y2=16x,直線與拋物線l有兩個不同的交點(diǎn),F(xiàn)是拋物線的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動點(diǎn).
(1)求|PA|+|PF|的最小值;
(2)求k的取值范圍;
(3)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案