【題目】已知函數(shù),其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1),定義域為,,依題意,解得;(2)對任意的都有成立等價于對任意的都有.利用導(dǎo)數(shù),求得在上是增函數(shù),最大值.而,由此,對分成,,三段,來討論的最大值,最后求得的取值范圍為.
試題解析:
(1)∵,∴,其定義域為,
∴,∵是函數(shù)的極值點,∴,即,
∵,∴.經(jīng)檢驗當(dāng)時,是函數(shù)的極值點,∴.
(2)對任意的都有成立等價于
對任意的都有,
當(dāng)時,,∴函數(shù)在上是增函數(shù),
∴.
∵,且,.
①當(dāng)且時,,
∴函數(shù)在上是增函數(shù),∴,
由,得,又,∴不合題意.
②當(dāng)時,若,則,若時,,
∴函數(shù)在上是減函數(shù),在上是增函數(shù),
∴,由,得,又,∴.
③當(dāng)且時,,
∴函數(shù)在上是減函數(shù),∴,
由,得,又,∴,
綜上所述,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知五邊形由直角梯形與直角△構(gòu)成,如圖1所示,,,,且,將梯形沿著折起,形成如圖2所示的幾何體,且使平面平面.
(1)在線段上存在點,且,證明:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機抽樣的方式從該校的兩班中各抽5名學(xué)生進行視力檢測,檢測的數(shù)據(jù)如下:
班5名學(xué)生的視力檢測結(jié)果是: .
班5名學(xué)生的視力檢測結(jié)果是: .
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪個班的學(xué)生視力較好?并計算班的5名學(xué)生視力的方差;
(2)現(xiàn)從班上述5名學(xué)生中隨機選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有6名奧運會志愿者,其中志愿者通曉日語, 通曉俄語, 通曉韓語,從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求被選中的概率;
(2)求和不全被選中的概率;
(3)若6名奧運會志愿者每小時派兩人值班,現(xiàn)有兩名只會日語的運動員到來,求恰好遇到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是直線和上的兩個動點,線段的長為,是的中點.
(1)求動點的軌跡的方程;
(2)若過點(1,0)的直線與曲線交于不同兩點.
①當(dāng)時,求直線的方程;
②試問在軸上是否存在點,使恒為定值?若存在,求出點的坐標(biāo)及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓外的有一點,過點作直線.
(1)當(dāng)直線過圓心時,求直線的方程;
(2)當(dāng)直線與圓相切時,求直線的方程;
(3)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為.
(1)當(dāng)切線的長度為時,求點的坐標(biāo);
(2) 若的外接圓為圓,試問:當(dāng)在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標(biāo);若不存在,說明理由.
(3)求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使函數(shù)在上有最小值2?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0)、B(4,0)
(1)若A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點,求該橢圓的方程;
(2)若A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點,求雙曲線的方程;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com