已知△ABC滿足以下條件,試求a的值.

(1)c=1,B=45°;

(2)C=45°,B=30°,

答案:
解析:

  (1)解法一:由余弦定理,得a2a-1=0.

  ∵a>0,∴

  解法二:由正弦定理,得

  又cb,∴C=30°.

  ∴A=180°-(BC)=180°-(30°+45°)=105°.

  ∴

  (2)解:由ABC=180°,得A=105°.

  由正弦定理,得

  思路分析:(1)已知兩邊及一邊的對角,可利用正弦定理,也可利用余弦定理;(2)已知兩角及一邊,可用ABC=180°求得A,再利用正弦定理求解.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出以下五個命題:①任意n∈N*,(n2-5n+5)2=1.
②已知x,y滿足條件
x≥0
y≤x
2x+y+k≤0
(k為常數(shù)),若z=x+3y的最大值為8,則k=-6.
③設全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則CU(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點的充要條件是f(1)•f(2)<0.
⑤已知△ABC所在平面內一點P(P與A,B,C都不重合)滿足
PA
+
PB
+
PC
=
BC
,則△ACP與△BCP的面積之比為2.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下命題:
①若|
a
b
|=|
a
|•|
b
|,則
a
b
;
a
=(-1,1)在
b
=(3,4)方向上的投影為
1
5
;
③若△ABC中,a=5,b=8,c=7,則
BC
CA
=20;
④若非零向量
a
b
滿足|
a
+
b
|=|
b
|,則|2
b
|>|
a
+2
b
|.
⑤已知△ABC中,
PN
=
1
3
PA
+
PB
+
PC
)則向量λ(
AB
+
AC
)(λ≠0)所在直線必過N點.其中所有真命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•汕頭二模)給出以下五個命題:
①?n∈N*,(n2-5n+5)2=1.
②當x,y滿足不等式組
x≥0
x≥y
2x-y≤1
時,目標函數(shù)k=3x+2y的最大值為5.
③設全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則?U(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點的充要條件是f(1)•f(2)<0.
⑤已知△ABC所在平面內一點P(P與A,B,C都不重合)滿足
PA
+
PB
+
PC
=
BC
,則△ACP與△BCP的面積之比為2.
其中正確命題的序號是
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學 來源:2007年廣東省汕頭市高考數(shù)學二模試卷(理科)(解析版) 題型:填空題

給出以下五個命題:
①?n∈N*,(n2-5n+5)2=1.
②當x,y滿足不等式組時,目標函數(shù)k=3x+2y的最大值為5.
③設全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則∁U(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點的充要條件是f(1)•f(2)<0.
⑤已知△ABC所在平面內一點P(P與A,B,C都不重合)滿足,則△ACP與△BCP的面積之比為2.
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案