【題目】設函數f(x)在R上存在導數f′(x),對任意的x∈R,有f(x)+f(-x)=x2,且x∈(0,+∞)時,f′(x)<x.若f(1-a)-f(a)≥-a,則實數a的取值范圍是______.
【答案】[,+∞)
【解析】
根據條件構造函數g(x)=f(x)-x2,判斷函數的奇偶性,利用導數研究函數的單調性,結合函數奇偶性和單調性將不等式進行轉化求解即可.
解:∵f(x)+f(-x)=x2,
∴f(-x)-x2=x2-f(x)=-[f(x)-x2],
設g(x)=f(x)-x2,
則g(x)是奇函數,
且g′(x)=f′(x)-x.
∵x∈(0,+∞)時,f′(x)<x.
∴當x∈(0,+∞)時,g′(x)<0.即此時g(x)為減函數,
∵g(x)是奇函數,
∴當x≤0時,g(x)也是減函數,
即g(x)在(-∞,+∞)上是減函數,
則若f(1-a)-f(a)≥-a,
等價為g(1-a)+(1-a)2-g(a)-a2≥-a,
即g(1-a)+-a+a2-g(a)-a2≥-a,
即g(1-a)≥g(a),
即1-a≤a,
得2a≥1,即a≥,
即實數a的取值范圍是[,+∞),
故答案為:[,+∞)
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數/顆 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天的數據的概率;
(2)若選取的是12月1日與12月5日的2組數據,請根據12月2日至4日的數據,求出關于的線性回歸方程,由線性回歸方程得到的估計數據與所選取的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,且,.四邊形ABCD滿足,,.E為側棱PB的中點,F為側棱PC上的任意一點.
(1)若F為PC的中點,求證:平面PAD;
(2)求證:平面平面PAB;
(3)是否存在點F,使得直線AF與平面PCD垂直?若存在,寫出證明過程并求出線段PF的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷下列命題的真假:
(1)存在兩個無理數,它們的乘積是有理數;
(2)如果實數集的子集A是有限集,則A中的元素一定有最大值;
(3)沒有一個無理數不是實數;
(4)如果一個四邊形的對角線相等,則這個四邊形是矩形;
(5)集合A是集合的子集;
(6)集合是集合A的子集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(13分)設{an}是公比為正數的等比數列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩城相距100,在兩城之間距甲城處的丙地建一核電站給甲、乙兩城供電,為保證城市安全,核電站距兩地的距離不少于10.已知各城供電費用(元)與供電距離()的平方和供電量(億千瓦時)之積都成正比,比例系數均是=0.25,若甲城供電量為20億千瓦時/月,乙城供電量為10億千瓦時/月,
(1)把月供電總費用(元)表示成()的函數,并求其定義域;
(2)求核電站建在距甲城多遠處,才能使月供電總費用最小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com