(本題滿分15分)已知過點,0)()的動直線交拋物線兩點,點與點關于軸對稱.(I)當時,求證:;
(II)對于給定的正數(shù),是否存在直線,使得被以為直徑的圓所截得的弦長為定值?如果存在,求出的方程;如果不存在,試說明理由.
(Ⅰ)見解析  (Ⅱ) 所以當時,存在直線,截得的弦長為,
時,不存在滿足條件的直線
方法一:(I)設,


    …………………………………………………………3 分

==0
              ………………………………………………6 分
方法二:過A、B分別作準線的垂線,垂足分別為、,



……………………………………………………6 分
(II)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為,
假設滿足條件的直線存在,直線被圓截得的弦為,則
 

                  ………………10分
弦長為定值,則,即,
此時,                         ………………12分
所以當時,存在直線,截得的弦長為,
時,不存在滿足條件的直線…………………………………………15 分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知點A(-1, 0)、B(1, 0), 動點C滿足條件:△ABC的周長為2+2.記動點C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)經(jīng)過點(0, )且斜率為k的直線l與曲線W有兩個不同的交點PQ,
k的取值范圍;
(Ⅲ)已知點M,0),N(0, 1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)已知平面上的動點及兩定點A(-2,0),B(2,0),直線PA,PB的斜率分別是,,且·。(1)求動點P的軌跡C的方程;
(2)已知直線與曲線C交于M,N兩點,且直線BM,BN的斜率都存在并滿足·,求證:直線過原點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率,過橢圓的右焦點作與坐標軸不垂直的直線交橢圓于兩點.
(1)求橢圓方程; 
(2)設點是線段上的一個動點,且,求的取值范圍;
(3)設點是點關于軸對稱點,在軸上是否存在一個定點,使得三點共線?若存在,求出定點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



A,B恒有
(1)求弦AB中點M的軌跡方程
(2)以AP和PB為鄰邊作矩形AQBP,求點Q軌跡方程
(3)若x,y滿足Q點軌跡方程,求的最值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若α∈R,則方程x2+4y2sinα=1所表示的曲線一定不是(    )
A.直線B.圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設在平面上,所圍成圖形的面積為,則集合的交集所表示的圖形面積為
(A)        (B)        (C)      (B) .                        (   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

長度為a的線段AB的兩個端點A、B都在拋物線y2=2Px(P>0,a>2P)上滑動,則線段AB的中點My軸的最短距離為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線的左、右兩個焦點分別為,點在雙曲線上,且,求的面積.

查看答案和解析>>

同步練習冊答案