分析 由Sn=$\frac{1}{2}$(1-an)知,當(dāng)n≥2時(shí),an=Sn-Sn-1=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,整理可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$,由S1=a1=$\frac{1}{2}$(1-a1)⇒a1=$\frac{1}{3}$,從而可知數(shù)列{an}是首項(xiàng)為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數(shù)列,于是可求得數(shù)列{an}的通項(xiàng)
解答 解:(1)因?yàn)镾n=$\frac{1}{2}$(1-an),
所以,當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{1}{2}$(1-an)-$\frac{1}{2}$(1-an-1)=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,
化簡得2an=-an+an-1,整理可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$,由S1=a1=$\frac{1}{2}$(1-a1)⇒a1=$\frac{1}{3}$,從而可知數(shù)列{an}是首項(xiàng)為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數(shù)列.
所以an=$\frac{1}{3}$×($\frac{1}{3}$)n-1=($\frac{1}{3}$)n.
(2)函數(shù)f(x)=log${\;}_{\frac{1}{3}}$x,bn=f(a1)+f(a2)+…+f(an)=1+2+3+4…+n=$\frac{n(n+1)}{2}$,Tn=$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$=2(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…$\frac{1}{n}-\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$,所以Tn的取值范圍為[1,2).
點(diǎn)評 本題考查數(shù)列遞推式的應(yīng)用,得到數(shù)列為等比數(shù)列,進(jìn)一步通過對數(shù)運(yùn)算得到得到f(an),Tn是關(guān)鍵,考查等比關(guān)系的確定及其通項(xiàng)公式的應(yīng)用,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0} | B. | (-1,0) | C. | {-1,0} | D. | (-3,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com