已知f(x)定義在R上以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,若關(guān)于x的方程f(x)=kx+k+1(其中k常數(shù))有4個(gè)不同的實(shí)數(shù)根,則k的取值范圍是   
【答案】分析:根據(jù)f(x)為定義在R上以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,可作出f(x)=x的圖象,f(x)=kx+k+1過(guò)定點(diǎn)(-1,1),對(duì)k分k>0與k<0討論,數(shù)形結(jié)合可解決之.
解答:解:∵f(x)=kx+k+1過(guò)定點(diǎn)(-1,1),
∴當(dāng)k>0時(shí),有解得,
同理可得當(dāng)k<0時(shí),解得;
故答案為:
點(diǎn)評(píng):本題考查函數(shù)的周期性,關(guān)鍵在于數(shù)形結(jié)合法的靈活應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)定義在R上的函數(shù),對(duì)于任意的實(shí)數(shù)a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f(
12
)的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)定義在R上以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,若關(guān)于x的方程f(x)=kx+k+1(其中k常數(shù))有4個(gè)不同的實(shí)數(shù)根,則k的取值范圍是
(-
1
3
,-
1
5
)∪(
1
5
,
1
3
)
(-
1
3
,-
1
5
)∪(
1
5
,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)壓軸試卷集錦(10)(解析版) 題型:解答題

已知f(x)定義在R上的函數(shù),對(duì)于任意的實(shí)數(shù)a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f()的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知f(x)定義在R上以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,若關(guān)于x的方程f(x)=kx+k+1(其中k常數(shù))有4個(gè)不同的實(shí)數(shù)根,則k的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案