【題目】已知函數(shù) 在區(qū)間內單調遞減,在區(qū)間內單調遞增,且在上有三個零點,1是其中一個零點.
(1)求的取值范圍;
(2)若直線在曲線的上方部分所對應的的集合為,試求實數(shù)的取值范圍.
【答案】(1);(2)無解.
【解析】試題分析:(1),得,將的值代入中,將代入得到的關系,求出導函數(shù)的兩個根函數(shù)的兩個極值點,利用函數(shù)的單調性,判斷出極值點與單調區(qū)間的關系,列出不等式求出的范圍即可;(2)問題轉化為的解集是,根據(jù)的范圍得出矛盾,得到的值不存在.
試題解析: (1),
因為在區(qū)間內單調遞減,在區(qū)間內單調遞增,
所以,得,
又,所以,
于是,
令,得.
因為在區(qū)間內單調遞增,且在上有三個零點,
所以,
所以.
(2)由直線在曲線的上方的部分對應的的集合為,
得,即的解集為,
因為時, ,
而時, 必存在正值,
所以的解集不可能為,
所以無解.
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面程序的功能是( )
A. 求1×2×3×4×…×10 00的值
B. 求2×4×6×8×…×10 000的值
C. 求3×5×7×9×…×10 001的值
D. 求滿足1×3×5×…×n>10 000的最小正整數(shù)n
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次招聘中,主考官要求應聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。
⑴記所抽取的3道題中,甲答對的題數(shù)為X,則X的分布列為____________;
⑵記乙能答對的題數(shù)為Y,則Y的期望為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次考試中,語文成績服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優(yōu)秀,隨機抽取的500名學生在本次考試中語文、數(shù)學成績特別優(yōu)秀的大約各多少人?(假設數(shù)學成績在頻率分布直方圖中各段是均勻分布的)
(Ⅱ)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中至少有一科成績特別優(yōu)秀的同學中隨機抽取3人,設3人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學期望;
(Ⅲ)根據(jù)以上數(shù)據(jù),是否有99%的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀.
(附公及表)
①若,則, ;
②, ;
③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,底面ABCD中,AB⊥AD,AD=2,AB=3,BC=BE=7,△DCE是邊長為6的正三角形.
(1)求證:平面DEC⊥平面BDE;
(2)求點A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求經過兩直線2x-3y-3=0和x+y+2=0的交點且與直線3x+y-1=0平行的直線l的方程;
(2)求經過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調查結果如表:
古文迷 | 非古文迷 | 合計 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)表中數(shù)據(jù)判斷能否有的把握認為“古文迷”與性別有關?
(2)先從調查的女生中按分層抽樣的方法抽出5人進行理科學習時間的調查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(3)現(xiàn)從(2)中所抽取的5人中再隨機抽取3人進行體育鍛煉時間的調查,記這3人中“古文迷”的人數(shù)為,求隨機變量的分布列與數(shù)學期望.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于、兩點,以為對角線作正方形,記直線與軸的交點為,問、兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com