平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(2,-1),B(-1,3),若點(diǎn)C滿(mǎn)足
OC
OA
OB
,其中0≤α,β≤1,且α+β=1,則點(diǎn)C的軌跡方程為
 
分析:
OC
OA
OB
,0≤α,β≤1,且α+β=1,可知ABC三點(diǎn)共線(xiàn),且C在線(xiàn)段AB上,故點(diǎn)C的軌跡方程即為線(xiàn)段AB的方程,
利用兩點(diǎn)式寫(xiě)出AB的方程,加上x(chóng)的范圍即可.
解答:解:由三點(diǎn)共線(xiàn)知識(shí)知,若點(diǎn)C滿(mǎn)足
OC
OA
OB
,其中0≤α,β≤1,且α+β=1,則ABC三點(diǎn)共線(xiàn),且C在線(xiàn)段AB上,故點(diǎn)C的軌跡方程即為線(xiàn)段AB的方程,直線(xiàn)AB的方程為y=-
4
3
(x-2)-1
,故線(xiàn)段AB的方程為4x+3y-5=0,x∈[-1,2]
故答案為:4x+3y-5=0,x∈[-1,2]
點(diǎn)評(píng):本題考查三點(diǎn)共線(xiàn)、兩個(gè)向量共線(xiàn)的條件,及直線(xiàn)方程等知識(shí),將向量知識(shí)與解析幾何很好的結(jié)合.由向量式子看出三點(diǎn)共線(xiàn)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(3,1)、B(-1,3),若點(diǎn)C滿(mǎn)足
OC
OA
OB
,其中α、β∈R,且α+β=1,則點(diǎn)C的軌跡方程為(  )
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知水平地面上有一籃球,在斜平行光線(xiàn)的照射下,其陰影為一橢圓(如圖),在平面直角坐標(biāo)系中,O為原點(diǎn),設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),籃球與地面的接觸點(diǎn)為H,則|OH|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,O(0,0),P(6,8),將向量
OP
按逆時(shí)針旋轉(zhuǎn)
π
4
后,得向量
OQ
則點(diǎn)Q的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿(mǎn)足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點(diǎn)M、N,且以MN為直徑的圓過(guò)原點(diǎn),求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•海淀區(qū)二模)平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩定點(diǎn)A(1,0)、B(0,-1),動(dòng)點(diǎn)P(x,y)滿(mǎn)足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相異兩點(diǎn)M、N.若以MN為直徑的圓經(jīng)過(guò)原點(diǎn),且雙曲線(xiàn)C的離心率等于
3
,求雙曲線(xiàn)C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案