【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會超過600.

1設(shè)一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;

2當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

【答案】1

2)當一次訂購550件服裝時,該廠獲得的利潤最大,最大利潤為6050

【解析】試題分析:(1)由題意單價P是關(guān)于x的分段函數(shù)。(2)先寫出利潤關(guān)于訂購量x的分段函數(shù)再計算x=450時的利潤.

試題解析:(1)當0<x≤100時,P60

100<x≤500時,P600.02x100)=62.

所以P

2)設(shè)銷售商一次訂購量為x件,工廠獲得的利潤為L元,則有

L=(P40x

x450時,L5850.

因此,當銷售商一次訂購450件服裝時,該服裝廠獲得的利潤是5850元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查某校 100 名學(xué)生的數(shù)學(xué)成績情況,得下表:

一般

良好

優(yōu)秀

男生(人)

18

女生(人)

10

17

已知從這批學(xué)生中隨機抽取1名學(xué)生,抽到成績一般的男生的概率為0.15.

(1)求的值;

(2)若用分層抽樣的方法,從這批學(xué)生中隨機抽取20名,問應(yīng)在優(yōu)秀學(xué)生中抽多少名?

(3)已知,優(yōu)秀學(xué)生中男生不少于女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為 ,此時四面體ABCD的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了了解高二學(xué)生物理學(xué)習(xí)情況,在34所高中里選出5所學(xué)校,隨機抽取了近千名學(xué)生參加物理考試,將所得數(shù)據(jù)整理后,繪制出頻率分布直方圖如圖所示.

(1)將34所高中隨機編號為01,02,…,34,用下面的隨機數(shù)表選取5組數(shù)抽取參加考試的五所學(xué)校,選取方法是從隨機數(shù)表第一行的第6列和第7列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第4所學(xué)校的編號是多少?
49 54 43 54 82 17 37 93 23 78 87 35 20
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
(2)求頻率分布直方圖中a的值,試估計全市學(xué)生參加物理考試的平均成績;
(3)如果從參加本次考試的同學(xué)中隨機選取3名同學(xué),這3名同學(xué)中考試成績在80分以上,(含80分)的人數(shù)記為X,求X的分布列及數(shù)學(xué)期望.(注:頻率可以視為相應(yīng)的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx。

(1)求曲線y=f(x)在點(1,f(1))處的切線方程;

(2)求證:當x>0時,f(x)≥l-;

(3)若x-1>alnx對任意x>1恒成立,求實數(shù)a的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a、b、c為三條不重合的直線,α、β、γ為三個不重合的平面,現(xiàn)給出六個命題.

a∥b; ②a∥b; ③α∥β;

α∥β; ⑤a∥α; ⑥a∥α,

其中正確的命題是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)使方程在區(qū)間上恰有三個解,則實數(shù)的值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于, 兩點, , 分別為線段, 的中點,若坐標原點在以為直徑的圓上,求的值.

查看答案和解析>>

同步練習(xí)冊答案