已知數(shù)列an=(1-2a)n,若
lim
n→∞
an
存在,則a的范圍是(  )
A、[0,1]
B、[0,
1
2
)∪(
1
2
,1]
C、[0,1)
D、(0,1)
分析:由極限知識(shí)可知
lim
n→+∞
qn存在只需-1<q<1且q≠0,解不等式-1<1-2a<1且1-2a≠0可得解.
解答:解:若
lim
n→+∞
an存在,由極限公式
lim
n→+∞
qn=0(-1<q<1且q≠0)可知,
只需-1<1-2a<1且1-2a≠0,∴0<a<1且a≠
1
2
;
a=0時(shí)
lim
n→+∞
an=1存在,又a=
1
2
時(shí)
lim
n→+∞
an=0存在,∴0≤a<1
故選C.
點(diǎn)評(píng):本題主要考查極限公式
lim
n→∞
qn=0(-1<q<1且q≠0)的應(yīng)用,同時(shí)要注意q=1及0時(shí)的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an=
n-1   (n為奇數(shù))
n       (n為偶數(shù))
,則a1+a2+a3+a4+…+a99+a100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an=2n-1,數(shù)列{bn}的前n項(xiàng)和為Tn,滿足Tn=1-bn
(I)求{bn}的通項(xiàng)公式;
(II)在{an}中是否存在使得
1an+9
是{bn}中的項(xiàng),若存在,請(qǐng)寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an=(n+1)×(
910
)n,求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知數(shù)列an=2n-1,數(shù)列{bn}的前n項(xiàng)和為Tn,滿足Tn=1-bn
(I)求{bn}的通項(xiàng)公式;
(II)試寫出一個(gè)m,使得
1am+9
是{bn}中的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案