【題目】設各項均為正數(shù)的數(shù)列的前項和為,滿足,且,公比大于1的等比數(shù)列滿足, .

(1)求證數(shù)列是等差數(shù)列,并求其通項公式;

(2)若,求數(shù)列的前項和;

(3)在(2)的條件下,若對一切正整數(shù)恒成立,求實數(shù)的取值

【答案】(1);(2);(3).

【解析】試題分析:(1)由的關系,可求出,利用等差數(shù)列定義即可證明;(2)根據(jù)通項是等差數(shù)列與等比數(shù)列相乘的特點,用錯位相減法求和;(3)可證明數(shù)列是單調(diào)遞減數(shù)列,故可轉(zhuǎn)化為恒成立,利用二次不等式恒成立的方法即可求解.

試題解析:(1)當時, , ,

,所以, .

因為當時, 是公差的等差數(shù)列,

,

是首項,公差的等差數(shù)列,

所以數(shù)列的通項公式為.

(2)由題意得, ;

則前項和 ;

相減可得

;

化簡可得前項和;

(3)對一切正整數(shù)恒成立,

,

可得數(shù)列單調(diào)遞減,即有最大值為,

,解得.

即實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點, 邊上的中線所在直線方程為, 邊上的高所在直線方程為. 

(1)求點的坐標;

(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以原點為極點, 軸正半軸為極軸建立坐標系,直線的極坐標方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(Ⅰ)求直線的直角坐標方程和曲線的普通方程;

(Ⅱ)曲線軸于兩點,且點, 為直線上的動點,求周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時, (萬元).當年產(chǎn)量不小于80千件時, (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

(Ⅰ)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左焦點為,直線與橢圓相交于點,當的周長最大時, 的面積是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎么分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用神七宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用、和預計產(chǎn)生收益來決定具體安排.通過調(diào)查,有關數(shù)據(jù)如下表:


產(chǎn)品A()

產(chǎn)品B()


研制成本、搭載費用之和(萬元)

20

30

計劃最大資金額300萬元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預計收益(萬元)

80

60


如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?

查看答案和解析>>

同步練習冊答案