設(shè)F1、F2是雙曲
x2
3
-y2=1
的兩個(gè)焦點(diǎn),P在雙曲線上,當(dāng)△F1PF2的面積為2時(shí)|
PF1
-
PF2
|的值為( 。
A、2B、3C、4D、6
分析:由題意可得 a=
3
,b=1,c=2,由|
PF1
-
PF2
|=|
F2F1
|=2c  求出結(jié)果.
解答:解:由題意可得 a=
3
,b=1,c=2,故  F1 (-2,0)、F2  (2,0).
|
PF1
-
PF2
|=|
F2F1
|=2c=4,
故選 C.
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程和雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,兩個(gè)向量差的運(yùn)算,求向量的模,求出 c是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:013

設(shè)o為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(a>0,b>0)的焦點(diǎn),若在雙曲

線上存在點(diǎn)P,滿足∠F1PF2=60°,∣OP∣=,則該雙曲線的漸近線方程為

[  ]

A.x±y=0

B.x±y=0

C.=0

D.±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點(diǎn),F1,F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

    (3)設(shè)直線y = mx + 1與雙曲線C的左支交于AB兩點(diǎn),另一直線l經(jīng)過(guò)M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案