用20cm長(zhǎng)的鐵絲分成兩段,每段各折成一個(gè)等邊三角形,則這兩個(gè)等邊三角形面積和的最小值為
 
cm2
考點(diǎn):函數(shù)最值的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)20cm長(zhǎng)的鐵絲分成兩段長(zhǎng)分別為x,20-x,易得兩個(gè)等邊三角形面積和S=
1
2
×(
x
3
)2
×sin60°+
1
2
×(
20-x
3
)2
×sin60°=
3
18
(x2-20x+200),由二次函數(shù)知識(shí)可得結(jié)論.
解答: 解:設(shè)20cm長(zhǎng)的鐵絲分成兩段長(zhǎng)分別為x,20-x,
則每個(gè)正三角形的邊長(zhǎng)為
x
3
,
20-x
3
,0<x<20,
∴兩個(gè)等邊三角形面積和S=
1
2
×(
x
3
)2
×sin60°+
1
2
×(
20-x
3
)2
×sin60°,
=
3
4
[(
x
3
)2
+(
20-x
3
)2
]=
3
18
(x2-20x+200),
由二次函數(shù)知識(shí)可知當(dāng)x=-
-20
2×1
=10時(shí),上式取最小值
50
3
9

故答案為:
50
3
9
點(diǎn)評(píng):本題考查函數(shù)的最值的實(shí)際應(yīng)用,構(gòu)造函數(shù)并用二次函數(shù)的性質(zhì)是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
n→∞
2n
2n+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=3x3-4x2+5x+1的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,向量
BC
可以表示為①
AB
-
AC
;②
AC
-
AB
;③
BA
+
AC
;④
BA
-
CA
.(  )
A、①②③B、①③④
C、②③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別為三個(gè)內(nèi)角∠A、∠B、∠C的對(duì)邊,已知b2+c2=a2+bc,若sin2A-sin(A-C)=sinB,求∠C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有8個(gè)白球,2個(gè)黑球,從中隨機(jī)連續(xù)摸取3次,每次取1個(gè)球,求:
(1)不放回抽樣時(shí),摸出2個(gè)白球,1個(gè)黑球的概率.
(2)有放回時(shí),摸出2個(gè)白球,一個(gè)黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,PA⊥平面ABCD,四邊形ABCD為正方形,且AD=2PA,E,F(xiàn),G,H分別是線段PA,PD,CD,BC的中點(diǎn).
(Ⅰ)求證:平面FDH⊥平面AEG;
(Ⅱ)求三棱錐E-AFG與四棱錐P-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
45
+
y2
20
=1,P為橢圓上在第一象限內(nèi)的點(diǎn),它與兩焦點(diǎn)的連線互相垂直,則P的坐標(biāo)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且a>c,已知
AB
BC
=-2,cosB=
1
3
,b=3,求a和c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案