已知A(-1,3),B(3,5)關(guān)于直線ax+y-b=0對稱,則
a
b
=
 
考點:與直線關(guān)于點、直線對稱的直線方程
專題:直線與圓
分析:由對稱性可得中點在直線和垂直兩個關(guān)系,可得ab的方程組,解方程組可得.
解答: 解:∵A(-1,3),B(3,5)關(guān)于直線ax+y-b=0對稱,
∴AB的中點(1,4)在直線ax+y-b=0上且AB連線與直線ax+y-b=0垂直,
∴a+4-b=0,且
5-3
3-(-1)
•(-a)=-1,
解得
a=2
b=6
,∴
a
b
=
1
3

故答案為:
1
3
點評:本題考查直線的對稱性,涉及的垂直關(guān)系和中點坐標公式,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=ncos
2
,其前n項和為Sn,則S2015等于(  )
A、1002B、1004
C、1006D、-1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別是內(nèi)角A,B,C對邊,且a2=bc.
(1)當a=4,
b
c
=
cosB
cosC
,求△ABC的面積;
(2)若A=
π
3
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD是矩形,P∉平面ABCD,過BC作平面BCFE交AP于E,交DP于F.
求證:四邊形BCFE是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1、F2,點M在雙曲線的左支上,且|MF2|=7|MF1|,則此雙曲線離心率的最大值為( 。
A、
4
3
B、
5
3
C、2
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若原點和點(1,1)都在直線x+y=a的同一側(cè),則a的取值范圍是(  )
A、a<0或a>2
B、0<a<2
C、a=0或a=2
D、0≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(元)有以下統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
(已知回歸直線方程是:
y
=bx+a,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
)由資料知y對x呈線性相關(guān)關(guān)系.試求:
(1)求
.
x
,
.
y
 及線性回歸方程
y
=bx+a;
(2)估計使用10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖給出的是計算
1
2
+
1
4
+
1
6
+…+
1
100
的值的一個程序框圖,其中判斷框中應(yīng)填入的是( 。
A、i>100B、i≤100
C、i>50D、i≤50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(2x+5)的定義域為[-2,2],則函數(shù)y=f(x)的定義域為
 

查看答案和解析>>

同步練習冊答案