設(shè)拋物線y2=8x,O為坐標(biāo)原點(diǎn),點(diǎn)A,B是拋物線上的點(diǎn),
(1)如果OA、OB的斜率分別為
12
,-2,求直線AB與x軸的交點(diǎn)坐標(biāo);
(2)如果OA⊥OB,求證:直線AB必過定點(diǎn),并求出定點(diǎn)坐標(biāo).
分析:(1)當(dāng)OA、OB的斜率分別為
1
2
,-2時(shí),可求出OA、OB的方程,代入拋物線y2=8x中,可求出A,B坐標(biāo),進(jìn)而得出直線AB的方程,再令方程中y=0,就可求直線AB與x軸的交點(diǎn)坐標(biāo).
(2)如果OA⊥OB,則OA,OB斜率都存在且互為負(fù)倒數(shù),可設(shè)出其中一個(gè)斜率為k,則另一個(gè)斜率為-
1
k
,這樣,設(shè)出兩直線方程,分別于拋物線方程聯(lián)立,解出A,B坐標(biāo),再求直線AB方程,看是否經(jīng)過定點(diǎn).
解答:解:(1)直線OA:y=
1
2
x
代入y2=8x解得A(32,16)
直線OB:y=-2x代入y2=8x解得B(2,-4)
∴AB方程為:y+4=
2
3
(x-2)
令y=0得x=8
∴直-線AB與x軸的交點(diǎn)為N(8,0)
(2)設(shè)AB方程為:y=kx+b,(k存在)
y=kx+b
y2=8x
消去x得:ky2-8y+8b=0,
(顯然k≠0)設(shè)A(x1,y1),B(x2,y2)則由OA⊥OB得x1x2+y1y2=0即
y
2
1
y
2
2
64
+y1y2=0

得y1y2=-64
8b
k
=-64
即b=-8k
∴AB方程為:y=kx-8k=k(x-8)
∴恒過定點(diǎn)N(8,0)
當(dāng)k不存在時(shí)容易驗(yàn)證AB方程也過定點(diǎn)N(8,0)
點(diǎn)評(píng):本題考查了直線與拋物線的位置關(guān)系,掌握其中設(shè)而不求的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-
3
,那么|PF|=(  )
A、4
3
B、8
C、8
3
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是
(-2,0)
;若過點(diǎn)Q的直線l與拋物線有公共點(diǎn),則直線l的斜率的取值范圍是
[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-
3
,那么|PF|=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=8x焦點(diǎn)為F,點(diǎn)P在此拋物線上且橫坐標(biāo)為4,則|PF|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=8x焦點(diǎn)為F,點(diǎn)P在此拋物線上且橫坐標(biāo)為4,則|PF|等于
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案