利用回歸分析的方法研究兩個具有線性相關關系的變量時,下列說法正確的是:
 

①相關系數(shù)r滿足|r|≤1,而且|r|越接近1,變量間的相關程度越大,|r|越接近0,變量間的相關程度越。
②可以用R2來刻畫回歸效果,對于已獲取的樣本數(shù)據(jù),R2越小,模型的擬合效果越好;
③如果殘差點比較均勻地落在含有x軸的水平的帶狀區(qū)域內(nèi),那么選用的模型比較合適;這樣的帶狀區(qū)域越窄,回歸方程的預報精度越高;
④不能期望回歸方程得到的預報值就是預報變量的精確值.
考點:兩個變量的線性相關
專題:概率與統(tǒng)計
分析:利用由r、R2、殘差圖的意義以及利用回歸方程進行預報的特點進行分析.
解答: 解:相關系數(shù)r是用來衡量兩個變量之間線性相關關系的方法,當r=0時,表示兩變量間無線性相關關系,當0<|r|<1時,表示兩變量存在一定程度的線性相關.且|r|越接近1,兩變量間線性關系越大.故①正確;
由R2計算公式可知,R2越小,說明殘差平方和越大,則模型擬合效果越差.故②錯誤;
由殘差圖的定義可③正確;
在利用樣本數(shù)據(jù)得到回歸方程的過程中,不可避免的會產(chǎn)生各種誤差,因此用回歸方程得到的預報值只能是實際值的近似值.故④正確.
故答案:①③④
點評:這部分內(nèi)容屬于了解內(nèi)容,所以只要記住了r、R2、殘差圖等的相關概念及性質就可以正確解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,P是圓O外一點,過P引圓O的兩條割線PAB、PCD,PA=AB=
5
,CD=3,則PC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設正項等比數(shù)列{an},已知它的前n項積為Tn,若T10=9T6,則a5•a12的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=x-aex(a∈R),x∈R,已知函數(shù)y=f(x)有兩個零點x1,x2,且x1<x2
(Ⅰ)求a的取值范圍;
(Ⅱ)證明:
x2
x1
隨著a的減小而增大;
(Ⅲ)證明x1+x2隨著a的減小而增大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從5男4女中選4位代表,其中至少有2位男生,且至少有1位女生,分配到四個不同的工廠調查,不同的分派方法有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,0),點P是拋物線y2=x上任意一點,則|AP|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=sinx,下列命題正確的有
 
.(寫出所有正確命題的序號)
①函數(shù)f(x)任意兩個零點之間的距離為kπ(k∈Z);
②存在x0>0,x0≤f(x0);
③曲線f(x)=sinx關于x軸對稱的圖形與關于y軸對稱的圖形重合;
④l1,l2是函數(shù)f(x)=sinx圖象上的任意兩條相互垂直的切線,則l1,l2斜率之和為0;
⑤設④中l(wèi)1,l2交于P點,則P點坐標可以是(
π
2
π
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠C=90°,∠A=60°,過C作△ABC的外接圓的切線CD,BD⊥CD于D.BD與外接圓交于點E,已知DE=5,則△ABC的外接圓的半徑為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,則“a3<b3”是“a<b”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案